> Gaussian
> Quadrature Formulas

Numerical Integration

EQUATION 1

The integral from a to b is approximately the sum of $\mathrm{n}+1$ products, where the ith product is the function evaluated at the ith node times a certain coefficient for $0<=\mathrm{i}<=\mathrm{n}$.

$$
\int_{a}^{b} f(x) \approx \sum_{i=0}^{n} A_{i} f\left(x_{i}\right)
$$

Link to Polynomial Interpolation

$$
\text { If } f(x) \approx p(x), \text { then } \int_{a}^{b} f(x) d x \approx \int_{a}^{b} p(x) d x
$$

Link to Polynomial Interpolation

Lagrange interpolation Formula:

$$
\begin{aligned}
& p(x)=\sum_{0}^{n} f\left(x_{i}\right) L_{i}(x) \\
& L_{i}(x)=\frac{\prod_{j=0}^{n}\left(x-x_{j}\right)}{\left(x_{i}-x_{j}\right)} \text { where } j \neq i
\end{aligned}
$$

Link to Polynomial Interpolation

Lagrange's interpolation formula is exactly accurate at the nodes. That is,

$$
p\left(x_{i}\right)=f\left(x_{i}\right) \quad \text { for } \quad 0 \leq i \leq n
$$

Theorem 1

Let q be a nontrivial polynomial of degree $\mathrm{n}+1$ such that b

$$
\int_{a} x^{k} q(x) d x=0 \quad(0 \leq k \leq n)
$$

Let $x_{0}, x_{1}, \ldots, x_{n}$ be the zeros of q . Then the formula

$$
\int_{a}^{b} f(x) d x \approx \sum_{i=0}^{n} A_{i} f\left(x_{i}\right) \quad A_{i}=\int_{a}^{b} l_{i}(x) d x
$$

will be exact for all polynomials of degree at most $2 n+1$. Furthermore, the nodes lie in the open interval (a,b).

The Bad News

ERT

Change of variables to the rescue!

$\int_{a}^{b} f(x) d x=\frac{1}{2}(b-a) \int_{-1}^{1} f\left[\frac{1}{2}(b-a) t+\frac{1}{2}(b+a)\right] d t$

Proof of Theorem 1

We want to show that

$$
\int_{a}^{b} f(x) d x \approx \sum_{i=0}^{n} A_{i} f\left(x_{i}\right)
$$

will be exact for all polynomials of degree at most $2 \mathrm{n}+1$, where $x_{0}, x_{1}, \ldots, x_{n}$ are the nodes of $\mathrm{q}(\mathrm{x})$, an orthogonal polynomial of degree $n+1$, and

$$
A_{i}=\int_{a}^{b} l_{i}(x) d x
$$

Proof continued...

Let f be any polynomial of degree at most $2 n+1$.
Divide f by q. This gives us a quotient function p and a remainder function r, both of which have degree at most n. In short, $f=p q+r$. We have it given that
$\int^{b} q(x) p(x) d x=0$.
We can also see that $f\left(x_{i}\right)=p\left(x_{i}\right) q\left(x_{i}\right)+r\left(x_{i}\right)=r\left(x_{i}\right)$ since each x_{i} is a root of $q(x)$.

Proof continued...

What's more, we know that since r has degree at most n , we can obtain $\quad \int_{a}^{b} r(x) d x \quad$ precisely using the formula

Thus,

$$
\int_{a}^{b} r(x) d x=\sum_{i=0}^{n} A_{i} r\left(x_{i}\right)
$$

$\int_{a}^{b} f(x) d x=\int_{a}^{b} p(x) q(x) d x+\int_{a}^{b} r(x) d x=\int_{a}^{b} r(x) d x=\ldots$
$\ldots=\sum_{i=0}^{n} A_{i} r\left(x_{i}\right)=\sum_{i=0}^{n} A_{i} f\left(x_{i}\right)$.

Enter Legendre or Mind your p's and q's. Especially q 's
$q_{0}(x)=1$
$q_{1}(x)=x$
$q_{2}(x)=\left(\frac{3}{2}\right) x^{2}-\frac{1}{2}$
$q_{3}(x)=\left(\frac{5}{2}\right) x^{3}-\left(\frac{3}{2}\right) x$

In General, Legendre Polynomials:

$$
q_{n}(x)=\frac{(2 n-1)}{n} x q_{(n-1)}(x)-\frac{(n-1)}{n} q_{(n-2)}(x)
$$

