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• A graph is a set of vertices, V, and a set of 

edges, E, (denoted by {v1,v2}) where 

v1,v2     V and {v1,v2}     E if there is a line 

between v1 and v2. 

• A subgroup graph of a group G is a graph 

where the set of vertices is all subgroups 

of G and the set of edges connects a 

subgroup to a supergroup if and only if 

there are no intermediary subgroups. 
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Examples of Subgroup Graphs
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• A graph is bipartite if the set of vertices V 

can be broken into two subset V1 and V2 

where there are no edges connecting any 

two vertices of the same subset.

Definitions



Examples of Bipartite Graphs
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Graph Cartesian Products

• Let G and H be graphs, then the vertex set 

of G x H is V(G) x V(H).

• An edge, {(g,h),(g`,h`)}, is in the edge set 

of G x H if g = g` and h is adjacent to h` or 

h = h` and g is adjacent to g`.



Examples of Graph Product
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Results on Graph Products

• The graph product of two bipartite graphs 

is bipartite.

• The difference in the size of the partitions 

of a graph product is the product of the 

difference in the size of the partitions of 

each graph in the product.



• Unbalanced bipartite graphs are never 

Hamiltonian. The reverse is not true in 

general.
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• For two relatively prime groups, G1 and 

G2, the subgroup graph of G1 X G2 is 

isomorphic to the graph cartesian product 

of the subgroup graphs of G1 and G2.

• The fundamental theorem of finite abelian 

groups says that every group can be 

represented as the cross product of cyclic 

p-groups.



Finite Abelian Groups

• Finite abelian p-groups are balanced if and 

only if            where n is odd.
nG p=

Z3 x Z3



Finite Abelian Groups

• A finite abelian group is balanced if and 

only if when decomposed into p-groups 

          x … x         ,       is odd for some    .
1

1p
G  n

np
G  i i



Cyclic Groups

• Cyclic p-groups are nonhamiltonian.

• Cyclic groups,            , with more than one 

prime factor are hamiltonian if and only if 

there is at least one       that is odd.

1
1 ... n

npp
 Z

i



Cyclic Groups
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Cyclic Groups
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Cyclic Groups
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x            is nonhamiltonian. 
p

Z
p

Z
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Dihedral Groups

• Dihedral groups are bipartite and the 

difference in the size of the partitions of 
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