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« Agraph is a set of vertices, V, and a set of
edges, E, (denoted by {v1,v2}) where
vliv2 € Vand{vl,yv2} € Eifthereis aline
between v1 and v2.

* A subgroup graph of a group G is a graph
where the set of vertices Is all subgroups
of G and the set of edges connects a
subgroup to a supergroup if and only if
there are no intermediary subgroups.



Examples of Subgroup Graphs
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Definitions

* A graph is bipartite if the set of vertices V
can be broken into two subset V, and V,
where there are no edges connecting any
two vertices of the same subset.



Examples of Bipartite Graphs
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Graph Cartesian Products

* Let G and H be graphs, then the vertex set
of Gx His V(G) x V(H).

* An edge, {(g,h),(g ,h")}, is in the edge set
of GXHIifg=g andh is adjacentto h or
h=h and gis adjacenttog .
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Examples of Graph Product




Results on Graph Products

* The graph product of two bipartite graphs
IS bipartite.

* The difference In the size of the partitions
of a graph product is the product of the
difference In the size of the partitions of
each graph in the product.



* Unbalanced bipartite graphs are never
Hamiltonian. The reverse Is not true In
general.
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 For two relatively prime groups, G, and
G,, the subgroup graph of G, X G, Is
Isomorphic to the graph cartesian product
of the subgroup graphs of G, and G,

* The fundamental theorem of finite abelian
groups says that every group can be
represented as the cross product of cyclic

p-groups.



Finite Abelian Groups

* Finite abelian p-groups are balanced if and
only if |G|=p" where n is odd.
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Finite Abelian Groups

 Afinite abelian group Is balanced if and
only if when decomposed into p-groups

Gpalx o X Gp «; is odd for some 1 .
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Cyclic Groups

» Cyclic p-groups are nonhamiltonian.

» Cyclic groups, £, ,« , with more than one
prime factor are hamiltonian if and only If
there Is at least one ¢; that is odd.



Cyclic Groups



Cyclic Groups
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Cyclic Groups
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/ x / ﬂis nonhamiltonian.
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(0,0,1)

(1,0,0)




(0,0,3)

(1,0,0)




Dihedral Groups

* Dihedral groups are bipartite and the
difference In the size ofatbe partitions of
D2p1 1ps2L pin |S H P _( 1) +0(p"p,° L p,"),
where

—1if X Is square
O(x) = .
0 otherwise
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