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Local Rings

Definition:    A finite commutative ring R is local if it has a unique maximal          

      ideal.

Definition:    A maximal ideal of a ring R is an ideal M, not equal to R,  

     such that there are no ideals “in between” M and R.  
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M is the maximal ideal of R.  I is not the maximal ideal of R 
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Zero Divisors

Definition:   An element 

is a zero divisor of R if there is an element  

such that  

a R

b R

0.ab =

When R is a local ring, the maximal ideal is exactly the 

set of zero divisors.  



Zero Divisor Graph

Definition:    The zero divisor graph of R, denoted 

is the graph whose vertex set is the set of zero divisors of R and whose edge 

set is  

( )R

{{ , } ( ) | 0}.E a b Z R ab=  =

16( ) {0,2,4,6,8,10,12,14}Z =Z

Example:      
16( ) =Z
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Non-Orientable Surfaces of 

Genus 1 and 2

Real Projective 

Plane Klein Bottle

A non-orientable surface cannot be embedded in 3-dimensional space without 

intersecting itself.  



Genus

Definition:    The non-orientable genus of a zero divisor graph is the 

      smallest integer k such that the graph can be drawn on a 

      surface of genus k without edges crossing.  

Example:    A planar graph has genus 0.  

16( ) =Z
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Example:    A planar graph has genus 0.  
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Example:  3,3K
Cannot be drawn on the plane 

without intersecting itself.  



Fundamental Polygons

Planar Genus 1

Genus 2
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Formulas for Finding the 

Genus of a Graph

,

( 2)( 2)
( )

2
m n

m n
K

− − 
=  
 

( 3)( 4)
( )

6
n

n n
K

− − 
=  
 

7( ) 3K =

Formulas for determining the non-orientable genus of complete graphs and 

complete bipartite graphs:

with the exception :for 

for 

3n 

, 2.m n 



The Genus of Complete 

Graphs

Example:  Complete graphs on n vertices:  

( ) 0 1,2,3,4

( ) 1 5,6

( ) 2 7.
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K for n

K for n
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= =
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 

Example:  Complete bipartite graphs:

,

3,3 3,4

4,4 3,5 3,6

( ) 0 1,2 .

( ) ( ) 1

( ) ( ) ( ) 2.

m nK for m and for all n
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My Game Plan:

Local Rings of 

order:  

Non-local Rings 
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 
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F F F

F F

With two local 

factors:

With three local 

factors:

p p p p  F F F F
With four 

local factors:  

Theorem:    Every finite commutative 

ring can be written as the product of 

local rings.  

p is prime



Examples of Local Rings      

when p=2

8Z 16Z
32Z
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8Z has p3 elements. 16Z has p4 elements. 32Z has p5 elements. 
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8Z
M = {zero divisors} = (2) = {0, 2, 4, 6}

M2 = (4) = {0, 4}

M3  = (0) = {0} 
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The Maximal Ideal and the 

Zero Divisor Graph



The Maximal Ideal and the 

Zero Divisor Graph

16Z
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M = (2) = {0, 2,4,6,8,10,12,14}

M2 = (4) = {0, 4, 8, 12}

M3 = (8) = {0, 8}

M4 = (0) = {0}



The Maximal Ideal and the 

Zero Divisor Graph

32Z
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M = (2) = {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30}

                                           M2 = (4) = {0, 4, 8, 12, 16, 20, 24, 28}

                                                                 M3 = (8) = {0, 8, 16, 24}

                                                                         M4 = (16) = {0, 16}

                                                                                 M5 = (0) = {0}



Collapsing the Graphs

M - M2 = (2) - (4) = {2, 6, 10, 14}

         M2 - M3 = (4) – (8) = {4, 12}

             M3 - M4 = (8) – (16) = {8}
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  { }a b R a b=  :

( ) { 0}ann a r R ra=  =

( ) ( )a b if ann a ann b=:

Making Vertex Sets From 

Equivalence Relations

Definition:    The set of annihilators of a ring element      is 

                                                                       .

a

Equivalence Relation:    

In other words, two ring elements a and b are equivalent if they have 

the same annihilators. 
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[8] [2][4]

[2] { 2 } {2,6,10,14}b R b=  =:

An Example of an 

Equivalence Relation
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Collapsing the Graphs of 

Integer Rings
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What’s Next:

So far, we have been 

considering integer rings 

where M, M2, M3, …are 

each generated by one ring 

element.  

[a3] [a][a2]
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What’s Next:

What happens when M is generated 

by more than one element?  For 

example:
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The 

End

I’ll never 

forget my 

time in 

Springfield.



[M2] [M5] [M3]

128Z



256Z
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