

- Definition: A maximal ideal of a ring R is an ideal M, not equal to R, such that there are no ideals "in between" M and R.
- Definition: A finite commutative ring R is local if it has a unique maximal ideal.

Definition: An element $a \in R$

is a zero divisor of R if there is an element $b \in R$

such that ab = 0.

When R is a local ring, the maximal ideal is exactly the set of zero divisors.

Definition: The zero divisor graph of R, denoted $\Gamma(R)$

is the graph whose vertex set is the set of zero divisors of R and whose edge set is $E = \{ \{a, b\} \subseteq Z(R) \mid ab = 0 \}.$

A non-orientable surface cannot be embedded in 3-dimensional space without intersecting itself.

Definition: The non-orientable genus of a zero divisor graph is the smallest integer k such that the graph can be drawn on a surface of genus k without edges crossing.

Formulas for determining the non-orientable genus of complete graphs and complete bipartite graphs:

$$\overline{\gamma}(K_n) = \begin{bmatrix} \frac{(n-3)(n-4)}{6} \end{bmatrix} \text{ for } n \ge 3 \text{ with the exception}:$$
$$\overline{\gamma}(K_7) = 3$$
$$\overline{\gamma}(K_{m,n}) = \begin{bmatrix} \frac{(m-2)(n-2)}{2} \end{bmatrix} \text{ for } m, n \ge 2.$$

Example: Complete graphs on n vertices:

$$\overline{\gamma}(K_n) = 0 \quad for \quad n = 1, 2, 3, 4$$

$$\overline{\gamma}(K_n) = 1 \quad for \quad n = 5, 6$$

$$\overline{\gamma}(K_n) > 2 \quad for \quad n \ge 7.$$

Genus 2

Example: Complete bipartite graphs: $\gamma(K_{m,n}) = 0$ for m = 1, 2 and for all n. $\gamma(K_{3,3}) = \gamma(K_{3,4}) = 1$ $\gamma(K_{4,4}) = \gamma(K_{3,5}) = \gamma(K_{3,6}) = 2.$

My Game Plan:

Local Rings of order: p p^2 p^3 p^4 p^5 p is prime

Theorem: Every finite commutative ring can be written as the product of local rings.

Examples of Local Rings when p=2

The Maximal Ideal and the Zero Divisor Graph

 $\mathsf{M} = (2) = \{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30\}$

 $M^2 = (4) = \{0, 4, 8, 12, 16, 20, 24, 28\}$

 $M^3 = (8) = \{0, 8, 16, 24\}$

 $M^4 = (16) = \{0, 16\}$

 $M^5 = (0) = \{0\}$

 $M - M^{2} = (2) - (4) = \{2, 6, 10, 14\}$ $M^{2} - M^{3} = (4) - (8) = \{4, 12\}$ $M^{3} - M^{4} = (8) - (16) = \{8\}$

Definition: The set of annihilators of a ring element a is $ann(a) = \{r \in R | ra = 0\}$.

Equivalence Relation: $a: b \ if \ ann(a) = ann(b)$

$$[a] = \{b \in R \mid a : b\}$$

In other words, two ring elements *a* and *b* are equivalent if they have the same annihilators.

Collapsing the Graphs of Integer Rings

0

 \mathbf{O}

C

4

 \mathbf{Z}_8

[2]

[2]

[8]

16

[4]

So far, we have been considering integer rings where M, M², M³, ...are each generated by one ring element.

$$M = (a)$$

 $M^{2} = (a^{2})$
 $M^{3} = (a^{3})$
.
.
 $M^{n} = \{0\}$

What happens when M is generated by more than one element? For example:

$$R = \mathbf{Z}_{4}[X] / (2X, X^{4})$$
$$M = (2, X)$$
$$M^{2} = (X^{2})$$
$$M^{3} = (X^{3})$$
$$M^{4} = \{0\}$$

$$M = (a,b)$$
$$M^{2} = (a^{2})$$
$$M^{3} = (a^{3})$$
$$M^{4} = \{0\}$$

