

- Definition: A maximal ideal of a ring R is an ideal M, not equal to R, such that there are no ideals "in between" M and R.
- Definition: A finite commutative ring R is local if it has a unique maximal ideal.

Definition: An element $a \in R$

is a zero divisor of R if there is an element $b \in R$ $b \in R$

such that $ab = 0$.

When R is a local ring, the maximal ideal is exactly the set of zero divisors.

Definition: The zero divisor graph of R, denoted $\Gamma(R)$

is the graph whose vertex set is the set of zero divisors of R and whose edge set is $E = \{ \{a,b\} \subseteq Z(R) | ab = 0 \}.$

A non-orientable surface cannot be embedded in 3-dimensional space without intersecting itself.

Definition: The non-orientable genus of a zero divisor graph is the smallest integer k such that the graph can be drawn on a surface of genus k without edges crossing.

Formulas for determining the non-orientable genus of complete graphs and complete bipartite graphs:

**Formulas for Finding the
\nGenus of a Graph**\n\nFormulas for determining the non-orientable genus of complete graphs and complete bipartite graphs:\n

$\overline{\gamma}(K_n) = \left[\frac{(n-3)(n-4)}{6} \right]$	for $n \geq 3$ with the exception:
$\overline{\gamma}(K_{n,n}) = \left[\frac{(m-2)(n-2)}{2} \right]$	for $m, n \geq 2$.

Example: Complete graphs on n vertices:

$$
\overline{\gamma}(K_n) = 0 \quad \text{for} \quad n = 1, 2, 3, 4
$$
\n
$$
\overline{\gamma}(K_n) = 1 \quad \text{for} \quad n = 5, 6
$$
\n
$$
\overline{\gamma}(K_n) > 2 \quad \text{for} \quad n \ge 7.
$$

Genus 2

Example: Complete

Phs

e graphs on n vertices:

= 0 for $n=1,2,3,4$

=1 for $n=5,6$

>2 for $n \ge 7$.

Example: Complete bipartite graphs:
 $\gamma(K_{m,n}) = 0$ for $m=1,2$ and for all n .
 $\gamma(K_{3,3}) = \gamma(K_{3,4}) = 1$
 $\gamma(K_{k,1}) = \gamma(K_{$ Example: Complete bipartite graphs: of Complete

vertices:

2,3,4

6

mple: Complete biparti

_{m,n}) = 0 for m = 1

{3,3}) = γ (K{3,4}) = 1

4,4) = γ (K_{3,5}) = γ (K_{3,5}) of Complete

tices:

2,3,4

6

mple: Complete bipartite graphs:

_{m,n}) = 0 for m = 1,2 and

{3,3}) = $\gamma(K{3,4}) = 1$
 $\gamma(K_{3,5}) = \gamma(K_{3,6}) = 2$. S of Complete

vertices:

1,2,3,4

5,6

7.

xample: Complete bipartite graphs:

($K_{m,n}$) = 0 for m = 1,2 and for all n.

($K_{3,3}$) = $\gamma(K_{3,4})$ = 1

($K_{4,4}$) = $\gamma(K_{3,5})$ = $\gamma(K_{3,6})$ = 2. S of Complete

vertices:

=1,2,3,4

5,6

.7.

xample: Complete bipartite graphs:
 $(K_{m,n}) = 0$ for $m = 1,2$ and for
 $(K_{3,3}) = \gamma(K_{3,4}) = 1$
 $(K_{4,4}) = \gamma(K_{3,5}) = \gamma(K_{3,6}) = 2$. S of Complete

vertices:

=1,2,3,4

5,6

.7.

xample: Complete bipartite graphs:
 $(K_{m,n}) = 0$ for $m = 1,2$ and for α
 $(K_{3,3}) = \gamma(K_{3,4}) = 1$
 $(K_{4,4}) = \gamma(K_{3,5}) = \gamma(K_{3,6}) = 2$. **c COMPIETE**
 For all 12.3.4
 For all 12.3.4
 For all 12.4.4
 K_{*m,n*}</sub> $= 0$ *for* $m = 1, 2$ *and for all n*.
 K_{3,3} $= \gamma(K_{3,4}) = 1$
 K_{4,4} $= \gamma(K_{3,5}) = \gamma(K_{3,6}) = 2$. of Complete

Fractices:

1,2,3,4

5,6

7.

ample: Complete bipartite graphs:
 $K_{m,n}$) = 0 for $m = 1,2$ and for all n.
 $K_{3,3}$) = $\gamma(K_{3,4}) = 1$
 $K_{4,4}$) = $\gamma(K_{3,5}) = \gamma(K_{3,6}) = 2$. $\gamma(K_{m,n})=0$ for $m=1,2$ and for all n. IS of Complete

n vertices:
 $x=1,2,3,4$

= 5,6
 $x \ge 7$.

Example: Complete bipartite graphs:
 $\gamma(K_{m,n}) = 0$ for $m = 1,2$ and for all n.
 $\gamma(K_{3,3}) = \gamma(K_{3,4}) = 1$
 $\gamma(K_{4,4}) = \gamma(K_{3,5}) = \gamma(K_{3,6}) = 2$. IS of Complete

n vertices:
 $x=1,2,3,4$

= 5,6

Example: Complete bipartite graphs:
 $\gamma(K_{m,n})=0$ for $m=1,2$ and for all n.
 $\gamma(K_{3,3})=\gamma(K_{3,4})=1$
 $\gamma(K_{4,4})=\gamma(K_{3,5})=\gamma(K_{3,6})=2$. **Complete**

S:

4

 $\begin{array}{c}\n\text{S:} \\
\text{S:} \\
\text{Genus 1}\n\end{array}$
 $\begin{array}{c}\n\text{Cernus 1}\n\end{array}$
 $\begin{array}{c}\n\text{Cernus 1}\n\end{array}$
 $= 0 \quad \text{for} \quad m = 1, 2 \quad \text{and} \quad \text{for all } n. \\
\begin{array}{c}\n\text{S:} \\
\text{S:} \\
\text{S$

My Game Plan:

Local Rings of order: p^2 | 3 p^4 and p^4 and 5 *p* p^3 p^5 p is prime

Theorem: Every finite commutative ring can be written as the product of local rings.

Examples of Local Rings when $p=2$

The Maximal Ideal and the Zero Divisor Graph

 $M = (2) = \{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30\}$

 $M² = (4) = \{0, 4, 8, 12, 16, 20, 24, 28\}$

 $M^3 = (8) = \{0, 8, 16, 24\}$

 $M⁴ = (16) = \{0, 16\}$

 $M⁵ = (0) = {0}$

 $M - M² = (2) - (4) = {2, 6, 10, 14}$ $M^2 - M^3 = (4) - (8) = \{4, 12\}$ $M^3 - M^4 = (8) - (16) = \{8\}$

Definition: The set of annihilators of a ring element α is $ann(a) = \{r \in R | ra = 0\}$.

Equivalence Relation: $a : b$ if $ann(a) = ann(b)$

$$
(a) = \{b \in R | a : b\}
$$

In other words, two ring elements *a* and *b* are equivalent if they have the same annihilators.

Collapsing the Graphs of Integer Rings

 \mathbf{Z}_8

[8]

So far, we have been considering integer rings where M, M^2 , M^3 , ...are each generated by one ring element.

$$
M = (a)
$$

\n
$$
M2 = (a2)
$$

\n
$$
M3 = (a3)
$$

\n
$$
\vdots
$$

\n
$$
Mn = \{0\}
$$

What happens when M is generated by more than one element? For example:

$$
R = \mathbf{Z}_4[X]/(2X, X^4)
$$

\n
$$
M = (2, X)
$$

\n
$$
M^2 = (X^2)
$$

\n
$$
M^3 = (X^3)
$$

\n
$$
M^4 = \{0\}
$$

What happens when M
\nby more than one elem
\nexample:
\n
$$
M = (a, b)
$$
\n
$$
M^2 = (a^2)
$$
\n
$$
M^3 = (a^3)
$$
\n
$$
M^4 = \{0\}
$$

