Accelerating the Pagerank Algorithm

M. Campbell Missouri State University REU

The Information Retrieval Problem

Actually two…

Given a finite set of Documents *D* and a query *q…*

I. Which elements of D are relevant to q?

II. Of the relevant documents, which are *most* relevant?

Exploiting the Structure of the document set

Scholarly papers:

Papers cite other papers. Papers which are cited the most are likely to be very important in their field. Additionally, the papers cited by important papers gain in relative importance.

What about the internet?

The internet has a similar structure due to hyperlinking. Pages which are very important get linked to by many pages, and pages linked to by important pages will likely be deemed to be more important than others.

Looking abstractly at the link structure of the web

The Pagerank Equation

 $r(P) = \sum_{Q \in B_P} \frac{r(Q)}{|Q|}$

The Iterative Pagerank Equation

$$
r_k(P_i) = \sum_{Q \in B_{P_i}} \frac{r_{k-1}(Q)}{|Q|}, \quad k = 1, 2, \ldots
$$

Determining the Pagerank Vector by the Power Method

Denote
$$
v_k = [r_k(P_1) \quad r_k(P_2) \quad \cdots \quad r_k(P_n)]^T
$$

$$
v_k \;=\; H\, v_{k-1}, \qquad \text{with} \quad H_{ij} = \left\{ \begin{array}{ll} \frac{1}{|P_j|} & \text{if } P_i \text{ has a link from } P_j \\ & \\ 0 & \text{otherwise.} \end{array} \right.
$$

This is the power method, where we are computing the eigenvector of H associated to the eigenvalue of 1

Fixing the Link matrix to ensure the pagerank vector exists I. Dangling nodes

$$
B = H + u a^T,
$$

$$
a_i = \left\{ \begin{array}{ll} 1 & \text{if page } i \text{ is a damping node} \\ 0 & \text{otherwise} \end{array} \right.
$$

$$
u=e/n
$$

Fixing The link matrix II. Reducibility (dangling webs)

$G = \alpha B + (1 - \alpha)E$ $E=u\,e^T$

 U is a probabilistic (entries add to one) "personalization" vector

The Google matrix

 $G v_k = \alpha B v_k + (1 - \alpha) E v_k$ $= \alpha H v_k + \alpha u a^T v_k + (1 - \alpha) u e^T v_k$ $= \alpha H v_k + \alpha u a^T v_k + (1 - \alpha) u.$

An alternate Method

$$
G\,v\,=\,v
$$

$$
G\,=\,\alpha\,(H+\mathcal{u}\,\mathcal{a}^T)+(1-\alpha)\,\mathcal{u}\,e^T
$$

$$
\alpha \, (H+u \, a^T) \, v \, + \, (1-\alpha) \, u \, e^T v \,\, = \,\, v
$$

$$
(I-\alpha H - \alpha u a^T) v = (1-\alpha) u
$$

The linear system

Letting $R=I-\alpha H$

It has been shown that $v = rx$ for some scalar r where **^x** is the solution of the system

$$
Rx=u
$$

Options for solving the system

There are many options for solving this system. I focused on three. I. Jacobi II. Gauss-Seidel III. Successive Over Relaxation(SOR) But first we study reorderings of the matrix to make it "nice" for the solver

stanford.edu/berkley.edu web

Stanford Reordered by descending **outdegree**

SB Reordered by descending outdegree

Stanford Reordered by descending indegree

SB Reordered by descending indegree

Reverse Cuthill Mckee

The Breadth first search

BFS reorder on Stanford web

BFS on Stanford/Berkley

The dangling node/BFS reordering

Solving the BFS/Dangling system

ng the BFS/Danging system\n
$$
\left(\begin{array}{cc}\nI & 0 \\
0 & I\n\end{array}\right) - \alpha \left(\begin{array}{cc}\nH_{11} & 0 \\
H_{21} & 0\n\end{array}\right) = \left(\begin{array}{cc}\nI - \alpha H_{11} & 0 \\
-\alpha H_{21} & I\n\end{array}\right)
$$
\n
$$
\left(\begin{array}{cc}\nI - \alpha H_{11} & 0 \\
-\alpha H_{21} & I\n\end{array}\right) \left(\begin{array}{c}\nx_1 \\
x_2\n\end{array}\right) = \left(\begin{array}{c}\nu_1 \\
u_2\n\end{array}\right)
$$
\n
$$
\left(\begin{array}{cc}\nI - \alpha H_{11}\right)x_1 = u_1 \\
x_2 = u_1 + \alpha H_{21}x_1\n\end{array}\right)
$$

Comparative Results

Further studies

I. Preconditioning II. Optimal implementation of Gauss-Siedel/SOR Algorithm III. Markov Chain Updating Problem with Linear Solving IV. Using Kendall-tau measure for convergence criterion.