# Cohen-Macaulay Monomial Rings

Robin Tucker-Drob

#### What's A Monomial Ring?

A monomial *f* is a polynomial with one term, i.e. a polynomial that may be expressed as:

 $f = x_1^{n_1} x_2^{n_2} \cdots x_k^{n_k}$ 

 $g_1$ ,  $g_2$ , and  $g_3$  are all monomials:  $g_1 = x^5 y^2 z^9$   $g_2 = y$   $g_3 = s^4 t^5$ 

$$h_1$$
 and  $h_2$  are not:  $h_1 = x^2 y^2 + 1$   $h_2 = y + z - x^5$ 

A monomial ring  $R[f_1, ..., f_k]$  consists of all R-linear combinations of products of the monomials  $f_1, ..., f_k$  where R is a ring.

We multiply monomials in the natural way:

$$r^4s^5 \cdot r^2st^7 = r^6s^6t^7$$

If we identify the monomial  $r^a s^b t^c$  with the vector (a, b, c), then monomial multiplication corresponds with vector addition:

$$r^4 s^5 \cdot r^2 s t^7 = r^6 s^6 t^7$$
  $\Leftrightarrow$   $(4, 5, 0) + (2, 1, 7) = (6, 6, 7)$ 

So corresponding to a monomial ring  $R[f_1, ..., f_k]$  is the *semigroup*\* *S* which is the collection of all non-negative linear combinations of the vectors identified with the exponents of  $f_1, ..., f_k$  (this implies that we include the zero vector in the semigroup).

For example:

$$R[s^2, st, t^2]$$

Corresponds with:  $S = \langle (2,0), (1,1), (0,2) \rangle$  $= \{a(2,0) + b(1,1) + c(0,2) : a, b, c \in \mathbb{Z}_{\geq 0}\}$ 

The tuples in pointy brackets are called the *generators* of *S*. From now on I will talk about a monomial ring and its corresponding semigroup interchangeably.

\* A group-like object which might not have inverse elements

## Semigroup Lattice

- If the elements of our semigroup are either pairs or triplets, we may visualize the structure of a semigroup and its corresponding monomial ring with a semigroup lattice.
- Simply plot the elements of the semigroup in the plane or in 3-space.
- Here is part of the semigroup lattice for *S*=<(2,0),(1,1),(0,2)>



### Simplicial Homogeneous Semigroups

- If the sum of the entries of each generator of a semigroup adds to the same number *d*, then the semigroup is said to be *homogeneous* and of degree *d*.
- For example, the homogeneous semigroup <(2,0),(1,1) > is of degree 2, and the homogeneous semigroup <(5,0,0),(0,5,0),(0,0,5),(1,2,2)> is of degree 5.
- I am looking in particular at *simplicial* homogenous semigroups:
  - Those with a lattice in the plane and with (d,0) and (0,d) in its set of generators.
  - Those with a lattice in space and with (d,0,0), (0,d,0), and (0,0,d) in its set of generators.

The second example above is also an example of a simplicial homogeneous semigroup (which is what I will mean by "semigroup" from here on).

### S = <(3,0,0), (0,3,0), (0,0,3), (1,1,1)>



- Unfortunately, a semigroup lattice in 3-space can be quite confusing.
- Here's part of one for

S=<(3,0,0),(0,3,0),(0,0,3),(1,1,1)>

(The colored lines and dots are an attempt to make things less confusing. Tiers are connected.)

## Semigroup Lattice Revisited

- Once again, here is part of the semigroup lattice for S=<(2,0),(1,1),(0,2)>
- The following non-generator elements appear since

(0,4) = (0,2) + (0,2)(1,3) = (1,1) + (0,2)(2,2) = (1,1) + (1,1)(3,1) = (1,1) + (2,0)(4,0) = (2,0) + (2,0)

are all in the semigroup. The element (0,0) is also in the semigroup.



## **Tier Structure**

- Note that a "tier" structure emerges.
- For a semigroup of degree *d*, an element with entries that add to *nd* is said to be on the *nth* tier.



# Missing Elements

- A simplicial homogenous semigroup of degree *d* may be "missing" some elements or points—that is, there may be tuples with entries that add up to a multiple of *d* that do not belong to the semigroup
- The example on the right is for S = <(0,6), (1,5), (4,2), (6,0) >
  - The missing elements on the first tier are (2,4), (3,3), and (5,1)
  - The missing elements on the second tier are (3,9), (9,3), and (11,1)



### Cohen-Macaulay Semigroups with Lattice in the Plane

- A simplicial homogeneous semigroup *S* of degree *d*, with lattice in the plane, is said to be Cohen-Macaulay (CM) if there do **not** exists any points *p* such that:
  - *p* is not in *S*—i.e. *p* is a missing point—and p+(d,0)and p+(0,d) are both in *S*
  - Otherwise *S* is said to be non-Cohen-Macaulay (NCM).



- S=<(0,4), (1,3), (3,1), (4,0)>
- (2,2) is missing, but (6,2)=(3,1)+(3,1) and (2,6)=(1,3)+(1,3) are not, so S is NCM.







•  $S = \langle (0,5), (1,4), (2,3), (3,2), (5,0) \rangle$  is CM since adding (d,0) to any of the missing points gives another missing point.



S=<(0,13),(2,11),(5,8)(13,0)> is also CM but this is harder to see (and show): For each missing point p, either p+(d,0), or p+(0,d) is in S.

#### How Many Cohen-Macaulay Semigroups are There?

- Dr. Reid showed that for semigroups with a lattice in the plane, in the grand scheme of things Cohen-Macaulay semigroups are rare.
- #*CM*<sub>2</sub>(*d*) is the number of Cohen-Macaulay semigroups of degree *d* with lattice in 2-space.
- $\#T_2(d)$  is the total number of (simplicial homogeneous) semigroups of degree *d* with lattice in 2-space.

$$\lim_{d\to\infty} \frac{\#CM_2(d)}{\#T_2(d)} = 0$$

- These numerical results from Dr. Reid's paper show that fairly quickly the numbers begin to favor NCM semigroups.
- *d* degree
- #*T*(*d*) total number number of semigroups
- #*CM*(*d*) number of CM semigroups
- *#NCM(d)* number of NCM semigroups
- For example, #*CM*(18)/#*T*(18)=0.0413647 so about 4.1 percent of semigroups of degree 18 are Cohen-Macaulay

| d  | #T(d)  | #CM(d) | #NCM(đ) |
|----|--------|--------|---------|
| 1  | 1      | 1      | 0       |
| 2  | 1      | 1      | 0       |
| 3  | 3      | 3      | 0       |
| 4  | 6      | 5      | 1       |
| 5  | 15     | 12     | 3       |
| 6  | 27     | 16     | 11      |
| 7  | 63     | 37     | 26      |
| 8  | 120    | 51     | 69      |
| 9  | 252    | 97     | 155     |
| 10 | 495    | 142    | 353     |
| 11 | 1023   | 257    | 766     |
| 12 | 2010   | 359    | 1651    |
| 13 | 4095   | 647    | 3448    |
| 14 | 8127   | 920    | 7207    |
| 15 | 16365  | 1605   | 14760   |
| 16 | 32640  | 2266   | 30374   |
| 17 | 65535  | 3795   | 61740   |
| 18 | 130788 | 5410   | 125378  |

### Semigroups With Lattice in 3-Space

• A simplicial homogeneous semigroup *S* of degree *d*, with lattice in 3-space, is said to be Cohen-Macaulay (CM) if there do **not** exists any points *p* such that:

*p* is a missing point but none of *p*+(*d*,*d*,0), *p*+(*d*,0,*d*), and are *p*+(0,*d*,*d*) missing.
Otherwise *S* is said to be non-Cohen-Macaulay

(NCM).

## Extending Results?

 $\lim_{d \to \infty} \frac{\# CM_3(d)}{\# T_3(d)} = 0$ 

- Although numerically the evidence for the above statement is quite strong, it seems to be quite difficult to actually prove the statement using similar methods as the 2-space case due to several combinatorial complications.
- The numerical results shows that fewer than 4 percent of semigroups of degree 5 are Cohen-Macaulay. For degree 6+ the ratio starts to become a very small fraction.

### Back to the Plane

- Moving back to semigroups with a lattice in 2space, what happens when we focus on semigroups with a specific number of generators?
- Note that since our semigroups are *simplicial* of degree *d*, we will always have at least the two generators (*d*,0) and (0,*d*).



•A geometric argument (omitted) shows that for three generators— i.e.  $S = \langle (0,d), (a,d-a), (d,0) \rangle$ —S is always Cohen-Macaulay. Above are some examples.

## $S = \langle (0,d), (b,d-b), (a,d-a), (d,0) \rangle$

• What about four generators? Note that since *S* is homogeneous we can just write the first entry for each generator since the second entry is then determined: that is, write *S*=<0,*b*,*a*,*d*> instead of *S*=<(0,*d*),(*b*,*d*-*b*),(*a*,*d*-*a*),(*d*,0)>

## Holding *b* and *a* Constant

- Using brute force method we can figure out which semigroups are CM.
- Holding *d* constant and trying to see which combinations of *b* and *a* yield CM (or NCM) semigroups was not very enlightening.
- However, when I held both *b* and *a* constant and looked at which values of *d* caused the semigroup to be NCM, a pattern emerged.
- Below is a table of combinations of *b*, *a* and *d* that are NCM. For each entry, the top number is *b*, the middle is *a*, and the bottom is *d*.
- The largest value of d in each row is: 4, 9, 16, 25, 36, 49,... these are the perfect squares. In each case the largest value for d is  $(a-1)^2$

b=1, a=34 6 4 9 b=1, a=4 5 7 5 8  $egin{array}{ccc} 1 & 1 \ 5 & 5 \ 11 & 12 \end{array}$ 5 16 b=1, a=51 1 6 6 14 15 6 8 6 13 6 6 1 1 6 6 19 20 6 25 b=1, a=6 b=1, a=87 7 16 7 7 7 36 7 7 b=1, a=7 8 13 8 8 17 8 28  $\frac{1}{8}$ 8 41 8 34 8 35  $\frac{1}{8}$ 12 

### First Result

then S is not Cohen-Macaulay.

Similar kinds of observations paved the way for the discovery of the above result concerning when some of these four-generator NCM semigroups. Note the limitation that gcd(b,a)=1.

### Other Results

• Extending the first result, here is a table of the number of NCM semigroups generated by 4 elements with *gcd*(*a*,*b*)=1 that I have accounted for compared to the actual number found using brute force calculations.

| Degree            | 4 | 5 | 6 | 7 | 8 | 9 : | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27  | 28  | 29  | 30  |
|-------------------|---|---|---|---|---|-----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|-----|-----|-----|-----|
| Actual # of NCM   | 1 | 1 | 3 | 3 | 6 | 9   | 9  | 11 | 18 | 19 | 22 | 26 | 32 | 36 | 43 | 46 | 57 | 58 | 63 | 69 | 82 | 94 | 96 | 103 | 112 | 120 | 137 |
| # Accounted For   | 1 | 1 | 3 | 3 | 6 | 9   | 9  | 11 | 18 | 19 | 21 | 26 | 32 | 36 | 41 | 44 | 56 | 57 | 61 | 67 | 78 | 91 | 91 | 97  | 108 | 116 | 130 |
| #Unnaccounted For | 0 | 0 | 0 | 0 | 0 | 0   | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 2  | 2  | 1  | 1  | 2  | 2  | 4  | 3  | 5  | 6   | 4   | 4   | 7   |