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Synopsis 

 A ring extension from Ω to Ωα.  

 The definition of Period-1 and Period-2 
orbits, along with an algorithm for finding 
Period-2 matrices.

 Discuss isomorphisms 
 Generalized Relations
 Powers of Period-1 and Period-2 2x2 

Matrices
 Multiplying NxM Recursive Matrices
 Generalizations 
 Problems that need additional research



Definitions

1 2 , , .n n nA A A   − −= + Z

1 2 1 2, 1, 1.n n nF F F F F− −= + = =

{...1,1,2,3,5,8,...}

Definition: A recursive integer sequence of order 2 is a sequence in the 

form

Definition: The Fibonacci sequence is a recursive sequence 

Definition: The Lucas sequence is a recursive sequence 
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Recursive Matrix

 We will use this definition of a recursive matrix 
interchangeably with the recursive sequence 
representation. 
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Note: The recursive matrix need not be square.

Definition: A recursive matrix is an nxm matrix in the form



Recursive Matrices

1 2 1 22 4 1, 2n n nA A A A A− −= + = =

{...1, 2,8,24,...}
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Example:

Example: 1 2 1 21, 1n n nA A A A A− −= + = =
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{...1, 2,8,24,...}

24 8 2

8 2 1

 
 
 

{...1,1,2,3,5,8,13,...}{...1,1,2,3,5,8,...}

13 8 5 3

8 5 3 2

5 3 2 1

3 2 1 1

 
 
 
 
 
 



More Definitions
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Definition: is the set of  recursive matrices with integer multiples of 

Fibonacci entries.

Examples:

Definition: is the set of  recursive matrices with integer multiples of 

Fibonacci entries.
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About Ω
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Definition: We define σ as the shift map.

Ω forms an integral domain.Theorem:

Theorem:

Theorem:



Examples
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Ring Extension

 Now we have a result for the Fibonacci and Lucas 
numbers, we would like to make a generalization for 
all recursive sequences, 

 The matrix we would require in the 2x2 case is

 Since the identity is in Ω, then we must have the 
identity in the ring extension.  Thus, β=1.

 Therefore, we will concentrate on 
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Ring Extension
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More Definitions
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2.wP
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Definition:
A Period-1 sequence is any sequence when expressed in 

matrix form will be closed under multiplication.  Define 

this set as

A Period-2 sequence is any sequence when expressed in matrix 

form will be closed under multiplication in the union of the 

Period-2 sequence and its complimentary Period-1 sequence. 

Define this set as   

Definition:

R wC



Isomorphism 
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Theorem:

Example:

Theorem:
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Period-2 2x2 Matrices
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Theorem: We express a Period-1 sequence as

Theorem: We express a Period-2 sequence for odd α as

Theorem: We express a Period-2 sequence for even α as



Proof for odd α
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Note: The discriminant of the characteristic polynomial plays an 

important role.

Definition: Given a recursive sequence in the form,

we define the characteristic polynomial, 

Proof:



Proof for odd α
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α=5 

5

{...1,5,26,...}.
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.
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Period-1 Period-2

Example:

140 27 27 5

27 5 5 2

135 26
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Generalized Recursive Relations
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Proof:

Proof:

is the shift map . Z.



The Shift Map
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{...0,1,2,5,12...}

Example:

Period-1 Period-2

{...0,1,3,7,17...}
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A Characteristic of Period-1 Matrices

 Period-1 Matrices act as units to their correlating 
Period-2 Matrices
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Theorem:

Proof:
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Powers of  Λα and ηα
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For α even
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Periodicity
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Theorem:

Proof:



4x4 Period-1 and Period-2 Matrices

Note: Similar to Period-1 and Period-2 2x2 matrices, it is possible to create a 

general formula for every α.

Example:



Higher Degree Periods

1,2 , ,For n a b c=  Z
( )n na b c + =



Theorem: such that the primitive case of 

is true.

Proof: The proof is dependent on the fact the degree of the ring extension 

is 2. 

Ω

Ωα

2

n c=Q=

( ) n c =Q=

Thus, there fails to exist periods of degree greater than 2.



The NxM case
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Definition: A complete orbit is an orbit closed under 

Example:

1 1 1

573 361
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219 138
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This complete one orbit, not two; this fails to be a complete orbit.



Resulting Generalizations

, 2 .n m Z. Z.

Theorem:

We are guaranteed a complete orbit when we are given nxm 

matrix where 
Theorem:

Every nxn recursive matrix, Mn, where n is even , forms a ring.

Theorem: The set of nxm matrices that form a complete orbit is a 

semigroup.

Theorem: 2
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Problems of Interest

 Relations between Period-1 and Period-2 
Sequences:

 Finding more isomorphisms

⚫ Continued fraction maps

⚫ Eigenvalue maps

⚫ Determinant maps

 Forming relationships for any power of every nxm 
recursive matrix in the Period-1 and Period-2 sets.

 Studying recursive relations of greater order.
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