
Diophantine Equations with 

Constraints
“Click and Clack’s Clock”

Caleb Bennett

Missouri State REU

Summer 2008



Click and Clack’s Clock

 Click and Clack are the hosts of an 
automotive repair show called Car Talk 
on National Public Radio.  Each week, 
Click and Clack pose a brainteaser to 
their listeners and those listeners who 
submit correct answers to the problem 
have a chance of winning a prize.

 The following problem, titled “Dividing 
Time” was introduced on August 15th, 
2005.



The Problem

 Given a normal, 12-

faced clock, how may 

a person make two 

cuts in the clock so 

that the numbers in 

each segment sum to 

the same number?
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The Solution

 11 + 12 + 1 + 2 = 26

 9 + 10 + 3 + 4 = 26

 8 + 7 + 6 + 5 = 26
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What about an n-faced clock?

 So we want to 

generalize the 

problem and 

determine whether or 

not the problem is 

solvable for an n-faced 

clock.

1
n

n - 1
.

.
.

.
.

.



The One Cut Case

 Rather than doing the 

two-cut case, let’s first 

back up and consider 

the case where only one 

cut may be made.
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For any n:

So for the one-cut case when only two segments 

are formed, we want each segment to contain half 

of this summation, or:
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We also need for this to give whole number 

solutions for it to make sense in the context of 

our problem.
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In order for to give whole number solutions, n 

must be of the form 4k or 4k+3 for 

some nonnegative integer k.

1
n

n - 1
.

.
.

.
.

.

a

a + 1b

b + 1

.

.
.

.

.
.



1
n

n - 1
.

.
.

.
.

.

a

a + 1b

b + 1

.

.
.

.

.
.

( )

( ) ( ) ( )

( )

( )( )
( )

1 1

2 2

11

2 2

1 1 1

2 2 4

1

2

1
1

2

b a

i i

n n
i i

b b a a n n

n n
b b a a

n n
b a b a

= =

+
− = 

+ + +
− =

+
+ − − =

+
− + + =

 

For a cut from a to b to 

be a solution, the following 

must be true:
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Let’s now consider the case for 

when n = 4k
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Each number on the clock can be paired 

with another number so that a total of 2k 

pairs is obtained, with each pair containing 

a sum of 4k+1.  So, to find a sequence 

whose sum is half of the total sum of 4k, 

we simply take the first half of these pairs, 

in other words, the first k of these pairs.
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Selecting the first k of these pairs 

corresponds to solutions of a = k 

and b = 3k.

Checking these solutions in our 

equation we see:
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n = 4k+3 Case

4k +1 2

. . .

This case is similar to the previous case 

in that it also may be solved by pairing.
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We end up with 2k+2 sets each 

containing a sum of 4k+3.  To find a 

sequence whose sum is one half of the 

total sum, we take the first half, or the 

first k+1, of these pairs.  The first k+1 

sets consist of the integers from 1 to k 

with their respective pairs, and 4k+3 by 

itself, meaning a=k.  a=k corresponds to 

b=3k+2 since a and b+1 are a pair 

adding up to 4k+3.

Checking these solutions in our equation 

we see:
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Conclusion for the One Cut Case

 Natural numbers of the form 4k and 4k+3 will 

always have at least one solution and natural 

numbers of the form 4k+1 and 4k+2 will never 

have solutions (for nonnegative integers k).



The Two Cut Case

 For a case where our n-faced clock is 

divided with two cuts, we have three 

separate cases:
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For Case A to have solutions we need:
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and:



Case B

For Case B to have solutions we need:
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Case C
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For Case C to have solutions we need:
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The equation from the previous slide 

corresponds to two additional equations 

for b, c, and d:

These three equations are four squares in 

arithmetic progression.  By Fermat’s four 

squares theorem, no integer solutions will 

be found for these equations making it 

impossible for solutions to our problem to 

occur under Case C.
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Finding Solution Families

 Examining one of equations from Case A, 

we see that it is the equation of a 

hyperboloid of one sheet.
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Image:HyperboloidOfOneSheet.png

http://upload.wikimedia.org/wikipedia/commons/7/7f/HyperboloidOfOneSheet.png


Finding Solution Families

 One property that 
we know 
hyperboloids of one 
sheet have is that 
every point on the 
hyperboloid has two 
lines passing through 
said point that lie 
completely on the 
hyperboloid.

Image:Ruled hyperboloid.jpg

http://upload.wikimedia.org/wikipedia/commons/a/ad/Ruled_hyperboloid.jpg


Finding Solution Families

 We are able to find a solution family for 

any solution we have by setting up 

parametric equations.

 For example, in Click and Clack’s original 

problem, a=2, b=4, c=8, and d=10 were a 

solution when n=12.



Finding Solution Families

 Now we set: 2
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Finding Solution Families

 By using our equations from Case A, we 

see:
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Finding Solution Families

 By setting these coefficients equal to zero 

and solving in terms of epsilon, we see 

that:
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Finding Solution Families

 From the previous table, by multiplying 

each row by the least common multiple 

of the denominators and substituting into 

our original parametric equations, we get 

four solution families:

 

1 t+2 2t+4 4t+8 5t+10 6t+12

2 52t+2 104t+4 217t+8 265t+10 312t+12

3 73t+2 121t+4 208t+8 260t+10 312t+12

4 73t+2 121t+4 217t+8 265t+10 312t+12

    



Finding Solution Families

 From the previous table, by multiplying 

each row by the least common multiple 

of the denominators and substituting into 

our original parametric equations, we get 

four solution families:

 

1 t 2t 4t 5t 6t

2 52t+2 104t+4 217t+8 265t+10 312t+12

3 73t+2 121t+4 208t+8 260t+10 312t+12

4 73t+2 121t+4 217t+8 265t+10 312t+12

    



Other Solution Families for the Two 

Cut Case

Case A Case B

6k 15k+5

6k+5 15k+9

36k+9 36k+9

36k+26 36k+26

72k+27 168k+20

72k+44 168k+147

90k+9 180k+170

90k+80 231k+98

120k+44 288k+207

120k+75 420k+329

82386k+351 624k+584



Caleb’s Conclusion to Click and 

Clack’s Clock
 Through our methods for finding solutions, 

we have created families of solutions 
covering roughly 1/2 of the integers, ruled 
out 1/3 of the integers, leaving roughly 16% 
remaining.

 We are in the process of (hopefully) showing 
that there are no families of non-solutions 
other than n=3k+1.

 We think similar methods will show that the 
limit of the number of solutions as n 
approaches infinity will be 2/3 of the 
integers.



Increasing the Number of Cuts

 We have conclusions to both the one-cut 

and two-cut cases of our problem, but 

what can we say when the number of cuts 

is increased?



Making More Than 2 Cuts

 There are 5 unique ways to make 3 cuts 

across a clock:
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Making More Than 2 Cuts

 Three of these 5 ways produce four 

squares in arithmetic progression, making 

them impossible for our problem.
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Two nodes:

Three nodes:

Four nodes:

Five nodes:

For t cuts, the number of ways 

to slice the clock without 

having four squares in 

arithmetic progression follows 

the pattern for the number of 

unlabeled planar trees with t+1 

nodes.



Six nodes:
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Theorem

 When t cuts are made across an n-faced 

clock, n of the form n=2(t+1)k and 

n=2(t+1)k-1, for some positive integer k, 

will always have solutions.
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 By pairing, we can show that when (t+1)k 

pieces are formed, the numerals around 

the clock may be grouped in such a way 

that they add to the correct summation.

Sketch of Proof for Theorem



Theorem

 Any time         cuts are made across an n-

faced clock, where p is some prime, 

existence of solutions can be determined 

for any positive integer n. 

1kp −



Sketch of Proof for Theorem

 If pk - 1 non-overlapping slices are made 

into the clock, pk pieces are formed.

 Only n of the form pks or pks -1 are 

eligible to have solutions because other n 

do not produce summations divisible by 

pk.



Sketch of Proof for Theorem

 For an n to be eligible, we need               

to give a whole number solution.

 In other words, we need 

 The only place this will occur is at n=pk 

and n=pk-1.
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Proof Sketch Cont.
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Once again, we use the 

idea of pairing numbers 

together.  By doing it 

the way shown at the 

right,  we can show that 

there is always at least 

one solution for cases 

where n=pks or 

n=pks+pk-1



In Summary

 Solution families have been found that 
encompass just over half of the integers 
for Click and Clack’s Clock problem.  
Another one third have been ruled out as 
solutions because of their summations.

 We are in the process of proving that 
there are no families of non-solutions.

 We hope to be able to show that the 
limit of the number of solutions 
approaches two thirds.  



In Summary

 Existence of solutions may be determined 
for any integer n when pk-1 cuts are made 
across the clock.

 When t cuts are made across an n-faced 
clock, n=2(t+1)k and n=2(t+1)k-1 will 
always have solutions.

 The number of ways to divide a clock 
using t non-overlapping slices follows the 
pattern for the number of unlabeled 
planar trees with t+1 nodes.



Future Ventures

 Investigate non-existence of solutions to 

crossing cuts cases.

 Investigate our conjecture that the limit 

of increasing cuts can be determined.
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