ACCELERATING GOOGLE'S PAGERANK

I Liz & Steve



Background
N

0 When a search query is entered in Google, the
relevant results are returned to the user in an order that
Google predetermines.

0 This order is determined by each web page’s PageRank
value.

0 Google’s system of ranking web pages has made it the
most widely used search engine available.

0 The PageRank vector is a stochastic vector that gives a
numerical value (0<val<1) to each web page.

0 To compute this vector, Google uses a matrix denoting
links between web pages.



Background
N

Main ideas:

0 Web pages with the highest number of inlinks
should receive the highest rank.

0 The rank of a page P is to be determined by
adding the (weighted) ranks of all the pages linking
to P.



Background
N

0 Problem: Compute a PageRank vector that contains
an meaningful rank of every web page

rk(e)=2"k-|gf) v =[r®) t®) L @)
QeBp

(1
v =V, _H; H. :<ﬁ

J

If there i1s a link

0 If no link

\



Power Method
N

0 The PageRank vector is the dominant eigenvector of
the matrix H...after modification

0 Google currently uses the Power Method to compute
this eigenvector. However, H is often not suitable for
convergence.

T T
o Power Method: V, =V,_, H

not stochastic

typically, H is
ypPIEaty, {notirreducible



Creating a usable matrix
N

G=a(H+au')+(@1-a)eu’
where O<a <l

e is a vector of ones and v (for the moment)
is an arbitrary probabilistic vector.



Using the Power Method
B

T _\, T
Vk+1 o Vk G
=av, H+av,'ua' +([1-a)u'

[ 4, |
40

dominant eigenvalue and 4, is the aptly named
subdominant eigenvalue

0 The rate of convergence is: where A4, is the



Alternative Methods:

Linear Systems

X (1 —aH)=U"

Vi =VIG <+
v=xI|x

\



Langville & Meyer’s reordering

S R s e

5000 TN ¢
Ll
7000 e &

< g:.ph":':u‘.'i"y‘-"u'l- TN ORI AES. 50 \'g'..': $AH AR T W I

78
iy

BT,

i i

]

0 2000 4000 6000 8000
nz = 16150

6000 ¢

7000 ¢

5000 |

9000 |

2000

4000 6000
nz = 16150

5000




Alternative Methods: Iterative
Aggregation/Disaggregation (IAD)
4

G = G, GlZi| v = V1i|
_Gzl G,

T T
U, Gy 1-u, Gye - C
- -
Wl
v= .
Cu, |




JAD Algorithm

o Form the matrix A

0 Find the stationary vector Wb :[\R@ C]
v :[\R’ﬁ @[ﬁﬂ

OV, =V.'G

0 If v, —v|<e , then stop. Otherwise,

% = (Vk+1) y / ||(Vk+1) y Hl




New ldeas:
The Linear System In IAD

W ] ot g |09 ]

\ng (1-G,)= C%Gm
\%Glze =c(1- l%JGzze) = Cl%JGzle



New Ideas: Finding C and R
B

1. Solve (1-G,,) Wp=cG,,' %

\% GlZe
9 G,

3. Continue until |Wo—Wold)| <

2. Let c=



Functional Codes

I
1 Power Method

0 We duplicated Google’s formulation of the power method
in order to have a base time with which to compare our
results

0 A basic linear solver

O We used Gauss-Seidel method to solve the very basic linear
system: X' (I —aH)=u'

O We also experimented with reordering by row degree
before solving the aforementioned system.

0 Langville & Meyer’s Linear System Algorithm

O Used as another time benchmark against our algorithms



Functional Codes (cont’d)
N

0 IAD - using power method to find w,

0 We used the power method to find the dominant
eigenvector of the aggregated matrix A. The rescaling
constant, ¢, is merely the last entry of the dominant
eigenvector

0 IAD — using a linear system to find w,

0 We found the dominant eigenvector as discussed
earlier, using some new reorderings



And now... The Winner!

0 Power Method with -

preconditioning -

O Applying a row and
column reordering by WOl
decreasing degree
almost always reduces
the number of
iterations required to
converge.

nz = 16150



Why this works...

1.

The power method converges faster as the
magnitude of the subdominant eigenvalue
decreases

Tugrul Dayar found that partitioning a matrix in
such a way that its off-diagonal blocks are close to
O, forces the dominant eigenvalue of the iteration
matrix closer to 0. This is somehow related to the
subdominant eigenvalue of the coefficient matrix in
power method.



Decreased lterations
B

Power Method Reordering

100

90

80

70

60

—-=-No Reordering

: : : —Reording by Dangling Nodes and Zero Columns
)| TR ........................ ........................ ........................ ......................... ...................... ol

Number of Iterations to Converge

P S— — — A S— N— N— ]

ol ——. VRPN NAS— — T— ARS— SO— i

| | | | I | |
1H%000 200000 300000 400000 500000 600000 700000 800000 862664
Size of Matrix



Decreased Time
B

Power Method Reordering

i
(8]

T T T T T T l :
—+=—=No Reordering o
40 Reordering by Dangling Nodes and Zero Columns |77 B e

....................................................................................................

[}
[}

[}
o

.
M

-
o

—_
M

..........................

Mumber of Seconds to Converge

—
o

(8]

.............................................................

0 i ] 1 i 1 i 1
100000 200000 300000 400000 500000 600000 700000 800000 862664
Size of Matrix



Some Comparisons
N

Sample Size 87 57 66 69 58
Interval Size 100 5000 5000 10000 15000
Mean Time

Pwr/Reorder 1.6334 2.2081 2.1136 1.4801 2.2410
STD Time

Pwr/Reorder 0.6000 0.3210 0.1634 0.2397 0.2823
Mean Iter

Pwr/Reorder 2.0880 4.3903 4.3856 3.7297 4.4752
STD Iter

Pwr/Reorder 0.9067 0.7636 0.7732 0.6795 0.6085

Favorable 100.00% 98.25% 100.00% 100.00% 100.00%



Matrix Code Time (sec) | GS-1 | PM-I | w-1 | Size G
California 1 —aH 0.119873 53
I —aH w/ reordering 0.060155 a9
9664 Nodes Mever's Algorithm 0.061451 18
1.73E-4 Sparsity IAD w/ Power Method 0.125680 13 46 1000
4637 Dang Nodes TAD w/ system & SOR 0.690081 49 181 1000
Power Method 0.084233 7
Power Method w/ reordering | 0.035091 22
Stanford 1 —aH 4.673486 56
I — aH w/ reordering 5.200621 55
251903 Nodes Mever's Algorithm 5.584932 5
2.91E-5 Sparsity IAD w/ Power Method 4.485200 23 61 1500
172 Dang Nodes [AD w/ system & SOR 3.684937 23 57 750
Power Method 4.950045 90
Power Method w/ reordering | 2.276534 19
CNR (2000) I—aH 5.537661 50
I — aH w/ reordering 4.942164 24
325557 Nodes Mever's Algorithm 4.380352 23
3.03E-5 Sparsity IAD w/ Power Method 5.328511 19 53 10000
78056 Dang Nodes [AD w/ system & SOR 4.172643 19 48 1000
Power Method 7.018047 7
Power Method w/ reordering | 3.102524 19
Stanford-Berkley 1 —oH 0.320476 55
I — aH w/ reordering 11.704303 46
6585230 Nodes Mever's Algorithm 14.450852 G2
1.62E-5 Sparsity IAD w/ Power Method 30.842767 90 237 4500
4744 Dang Nodes [AD w/ system & SOR 24.503765 90 256 1000
Power Method 8.058482 90
Power Method w/ reordering | 7.095738 28
EU(2005) 1 —aH 33.467238 50
I —aH w/ reordering 53.20077¢ 7
862664 Nodes Mever's Algorithm 45817442 39
2.58E-5 Sparsity IAD w/ Power Method 25.945539 15 41 10000
4744 Dang Nodes TAD w/ system & SOR 22.499486 16 48 10000
Power Method 38.617480 82
Power Method w/ reordering | 16.727974 19
IN (2004) T—aH 38.20 52
I — aH w/ reordering 31.46 28
1382908 Nodes Mever's Algorithm 20.22 25
8.85E-6 Sparsity IAD w/ Power Method 26.69 18 44 10000
282306 Dang Nodes [AD w/ system & SOR 23.95 18 46 10000
Power Method 46.09 ]
Power Method w/ reordering 31.59 68
Wikipedia I —aH 44,02 54
I — aH w/ reordering 52.95 22
1634989 Nodes Mever's Algorithm 64.01 54
7.30E-6 Sparsity IAD w/ Power Method 46.32 19 54 10000
72556 Dang Nodes [AD w/ system & SOR 119.94 101 400 10000
Power Method 33.86 59
Power Method w/ reordering 18.89 12




Future Research

0 Test with more advanced numerical algorithms for linear

systems (Krylov subspaces methods and preconditioners,
i.e. GMRES, BICG, ILU, etc.)

0 Test with other reorderings for all methods

0 Test with larger matrices (find a supercomputer that
works)

01 Attempt a theoretical proof of the decrease in the
magnitude of the subdominant eigenvalue as result of
reorderings.

01 Convert codes to low level languages (C++, etc.)
01 Decode MATLAB’s spy



Langyville & Meyer’s Algorithm

H =

_(I _aHll)_l a(l _aHll)_lH12 +V2T

(Il —aH) ™ = 0 |

X'={ v (1 —aH,)™ v (I—aHy) " Hy, +v, ]

Xir(l —aH,,) :V1T

T LT T
X, =aX H,+V,




Theorem: Perron-Frobenius
e

o If A is a non-negative irreducible matrix, then
o P(A) is a positive eigenvalue of A
O There is a positive eigenvector V associated with P(A)

o P(A) has algebraic and geometric multiplicity 1



The Power Method: Two Assumptions
-]

0 The complete set of eigenvectors v,K v_
are linearly independent

0 For each eigenvector there exists eigenvalues
such that |4|>]4,|2L =|4,]



	Slide 1: Accelerating Google’s PageRank
	Slide 2: Background
	Slide 3: Background
	Slide 4: Background
	Slide 5: Power Method
	Slide 6: Creating a usable matrix
	Slide 7: Using the Power Method
	Slide 8: Alternative Methods: Linear Systems
	Slide 9: Langville & Meyer’s reordering
	Slide 10: Alternative Methods: Iterative Aggregation/Disaggregation (IAD)
	Slide 11: IAD Algorithm
	Slide 12: New Ideas: The Linear System In IAD
	Slide 13: New Ideas: Finding     and  
	Slide 14: Functional Codes
	Slide 15: Functional Codes (cont’d)
	Slide 16: And now… The Winner!
	Slide 17: Why this works…
	Slide 18: Decreased Iterations
	Slide 19: Decreased Time
	Slide 20: Some Comparisons
	Slide 21
	Slide 22: Future Research
	Slide 23: Langville & Meyer’s Algorithm
	Slide 24: Theorem: Perron-Frobenius
	Slide 25: The Power Method: Two Assumptions

