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Groups and Subgroups

A group is a set of elements with a binary 

operation that satisfy the properties
▪ Closure

▪ Associativity

▪ Identity

▪ Inverse

A subgroup is a subset of a group such that the 

same four properties hold.



Subgroup Lattices

A subgroup lattice is a graph associated with a 

group such that

⚫ vertices are the subgroups of G

⚫ an edge connects vertices M and N if M≤N and 

there is no intermediate subgroup(or vice versa) 



Example: D6
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⚫ The symmetries of an equilateral triangle.

⚫ generators and relations:

 

 r,s | r3 =1,s2 =1,srs−1 = r−1 
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Chromatic Number

⚫ The chromatic number of a graph is the 

minimum number of colors one can use to 

color the vertices of the graph so that no two 

adjacent vertices are the same color.

⚫ If the chromatic number of a graph is two, 

then it is called bipartite.



Abelian Groups



Other Bipartite Groups

⚫ Abelian groups are bipartite

⚫ P-groups are bipartite

⚫ Cyclic semidirect cyclic groups are bipartite
▪ Dihedral groups are in this category



Tying it All Together

All of the groups mentioned in the previous slide 

have the property of being supersolvable, which 

give them a very regular structure.

A subgroup lattice is Dedekind-Jordan if every 

upward path from the trivial group to the entire 

group through the lattice is the same length.



Kenkichi Iwasawa proved 

that a subgroup lattice of 

a group is Dedekind iff 

the group is 

supersolvable.

It is easy to see that a 

lattice is bipartite if it is 

Dedekind

However there are bipartite 

lattices which aren’t 

Dedekind.
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Other Subgroup Lattices

Another collection of subgroup lattices we have 
been investigating are of the form

We have shown that these groups are 
supersolvable, and thus bipartite, when n|p-1.

There are examples of tripartite lattices when 
n|p+1 and non-dedekind bipartite lattices 
when n|p2 +p+1 where n is prime.









Chromatic Number Four

One question of interest is whether the 

chromatic number of lattices, increases 

arbitrarily. We begin by attempting to find a 

any lattice with chromatic number four.

⚫ Exhaustive search of subgroup lattices

⚫ Construction





Conjugacy Classes

⚫ A way of simplifying the graphs we get in 

GAP is to instead consider the coloring of the 

conjugacy class lattice.

⚫ This conjugacy class lattice gives a lower 

bound for the chromatic number of the 

subgroup lattice 



Construction

⚫ Subgroup lattices are triangle free.

⚫ There are ways of constructing triangle 

 free graphs with high chromatic  

 number(i.e. Mycielski’s construction), 

 and we hope to use similar methods to 

construct lattices with larger  

 chromatic number as well.
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Lattices and Digraphs

⚫ Lattices can be represented as directed 

graphs, I.e. graphs where edges have a 

direction.

⚫ Here the direction represents which way is 

going up the lattice

⚫ Therefore there can be no cycles or 

“shortcuts”



Cycles and Shortcuts



Example
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Grotzsch Graph



Subgroup Lattices of 

Infinite Abelian Groups



Finitely Generated Abelian 

Groups

⚫ Finitely generated of abelian groups are of 

the form

where A is finite abelian.

⚫ All finitely generated abelian groups can be 

shown to be bipartite. 





Groups generated by any 

(a,b) go on this level as well.



Infinitely Generated Abelian 

Groups

⚫ There is no such general form for for infinitely 
generated abelian group.

⚫ Examples: 

 

  where        gives the pkth complex roots of 
one.



Where N(a)-N(b) = 0

Where N(a)-N(b) = 1

Where N(a)-N(b) = -1

Where N(a)-N(b) = 2

Let N(x) be the number 

of non-distinct prime 

divisors of x.





Future Goals

⚫ Further investigate infinite groups, abelian 

and non-abelian.

⚫ Fill in the gaps for our finite semi-direct 

products.

⚫ Prove one way or the other for the existence 

of chromatic number four lattices and 

subgroup lattices.
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