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Standard Eigenvalue Problem

Definition

The standard eigenvalue problem is of the form

Ax = λx

where A is a matrix, λ is an eigenvalue, and x is the corresponding
eigenvector. The eigenvalues must satisfy the characteristic
equation

det(A− λI ) = 0.
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Nonlinear Eigenvalue Problem

Definition

The nonlinear eigenproblem is a generalization of the standard
eigenvalue problem. The nonlinear problem is of the form

A(λ)x = 0 or y∗A(λ) = 0

where A(λ) is a matrix whose entries are functions dependent on
the value λ, λ is the nonlinear eigenvalue, and x and y∗ are the
right and left nonlinear eigenvectors respectively. If
A(λ) = B − λI , the problem reduces to the standard eigenvalue
problem. The nonlinear eigenvalues must be the solutions of the
characteristic equation

det A(λ) = 0.

Andrew Binder Smooth Factorizations in Dynamical Systems



Introduction Method Theory Existence Algorithm Comparison Cubic Convergence Applications Conclusion

Quadratic Eigenproblem

Example

Quadratic Eigenproblem:

A2λ
2 + A1λ+ A0 = 0

Applications:

Structural Dynamics

Vibrational Problems

Fluid Dynamics
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Matrix Decomposition

Definition

Matrix decomposition is the factorization of a matrix into the
product of new matrices.

QR Decomposition.

LU Decomposition.
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Rank Revealing LU Matrix

Rank Deficient A

P1AP2 = LU

=

[
L11 0
L21 I

] [
U11 U12

0 0

]

Example
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Rank Revealing LU Matrix

Rank Deficient A

P1AP2 = LU

=

[
L11 0
L21 I

] [
U11 U12

0 0

]

Example

A =

2 4 5
2 4 3
3 6 1


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Rank Revealing LU Matrix

Rank Deficient A

P1AP2 = LU

=

[
L11 0
L21 I

] [
U11 U12

0 0

]

Example

P1AP2 =

6 1 3
4 5 2
4 3 2


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Rank Revealing LU Matrix

Rank Deficient A

P1AP2 = LU

=

[
L11 0
L21 I

] [
U11 U12

0 0

]

Example

LU =

1 0 0
2
3 1 0
2
3

7
13 1

6 1 3
0 41

3 0
0 0 0


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Rank Revealing QR Matrix

Rank Deficient A

AP = QR

= Q

[
R11 R12

0 0

]
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Determining Nonlinear Eigenvalues Through Minimization

Goal

Find a λ so that det A(λ) = 0

Plan

Guess the nonlinear eigenvalue

Perform rank revealing decomposition

Minimize lower right block

Repeat steps using new guess until eigenvalue is found
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Newton’s Minimization Technique

Problem

f (x) = 0

f (λ) = ||U22(λ)||2F ≈ ||U22(λ0) + U ′22(λ0)(λ− λ0)||2F = 0

Iterative Method

xn+1 = xn − f (xn)
f ′(xn)
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Newton’s Minimization Technique

Problem

f ′(x) = 0

f ′(λ) = d
dλ ||U22(λ)||2F ≈

d
dλ ||U22(λ0)+U ′22(λ0)(λ−λ0)||2F = 0

Iterative Method

xn+1 = xn − f ′(xn)
f ′′(xn)
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Smooth Decomposition of a Nonsingular Matrix

Lemma

All full column rank matrices A(λ) ∈ C k with nonsingular leading
principle submatrices have a unique L(λ)U(λ) ∈ C k decomposition.

Proof.

Assume A(λ) = L(λ)U(λ)

Determine entries of L(λ) and U(λ)
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Smooth Decomposition of a Matrix Nonsingular at a Point

Theorem

Let A(λ) ∈ C k such that A(λ0) is nonsingular. Assume there’s a
permutation matrix P such that PA(λ0) = L0U0, where L0 is unit
lower triangular and U0 is upper triangular. Then, there is a
neighborhood N(λ0) such that

PA(λ) = L(λ)U(λ) ∀ λ ∈ N(λ0),

with L(λ0) = L0, U(λ0) = U0; L(λ),U(λ) ∈ C k , L(λ) unit lower
triangular matrix, and U(λ) upper triangular.

Proof.

Locally perturb A(λ0) using Taylor’s Theorem

Create lower triangular matrices so that the perturbation
becomes upper triangular.
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Smooth Decomposition of a General Matrix

Theorem

Let A(λ) ∈ C k be a n × n matrix such that A(λ0) has a column
rank of n −m, m ≤ n − 1. Assume there are permutation matrices
P1, P2 such that P1A(λ0)P2 = L0U0, where L0 is a block unit
lower triangular matrix and U0 is a block upper triangular matrix.
Then, there is a neighborhood N(λ0) such that

P1A(λ)P2 = L(λ)U(λ) ∀ λ ∈ N(λ0),

with L(λ0) = L0, U(λ0) = U0; L(λ), U(λ) ∈ C k , L(λ) a block unit
lower triangular matrix, U(λ) a block upper triangular matrix.
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LU Algorithm for Computation of Nonlinear Eigenvalues

Step 1: Given an initial approximation λ0 to λ∗
Step 2: Compute

A(λi ) and A′(λi ), i = 0, 1, · · ·

Step 3: Compute the LU decomposition with complete column
pivoting of A(λi ):

P1A(λi )P2 = L(λi )U(λi )
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LU Algorithm for Computation of Nonlinear Eigenvalues

Step 4: Compute

U ′2,2(λi ) = (L−1
i P1A

′(λi )P2)2,2 − (L−1
i P1A

′(λi )P2)2,1(U
(i)−1

1,1 U
(i)
1,2)

Step 5: Compute

λi+1 = λi −
(col U ′2,2(λi ))H · col U2,2(λi )

||U ′2,2(λi )||2F
.

Step 6: If the desired accuracy is attained, stop the iteration.
Otherwise, repeat steps 2-6.
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QR Algorithm for Computation of Nonlinear Eigenvalues

Step 3: Compute the LU decomposition with complete column
pivoting of A(λi ):

A(λi )P = Q(λi )R(λi )

Step 5: Compute

λi+1 = λi −
(col R ′2,2(λi ))H · col R2,2(λi )

||R ′2,2(λi )||2F
.
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Theory of Numerical Rank Determination

Property

Let AP = QR be a rank revealing decomposition. Then, the
diagonals of R have the property that

|r1,1| ≥ · · · ≥ |rt,t | >> |rt+1,t+1| ≥ · · · ≥ |rn,n|.
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Theory of Numerical Rank Determination

Property

Let AP = QR be a rank revealing decomposition. Then, the
diagonals of R have the property that

|r1,1| ≥ · · · ≥ |rt,t | >> |rt+1,t+1| ≥ · · · ≥ |rn,n|.

|rt+1,t+1| ≤ ε|r1,1| ≤ |rt,t |
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Theory of Numerical Rank Determination

Property

Let AP = QR be a rank revealing decomposition. Then, the
diagonals of R have the property that

|r1,1| ≥ · · · ≥ |rt,t | >> |rt+1,t+1| ≥ · · · ≥ |rn,n|.

|rt+1,t+1|
|r1,1|

≤ ε ≤ |rt,t |
|r1,1|

.
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4 x 4 Time Comparison

Table: Time [ms] Comparison of 4 x 4 Algorithm Performance

Nonlinear LU QR Ratio of Averages
Matrix Average Average (QR / LU)

Q 4.369 16.141 3.695

Q, E 4.445 15.943 3.587

Q, S 4.472 16.088 3.597

Q, E, S 4.568 16.332 3.575
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10 x 10 Time Comparison

Table: Time [ms] Comparison of 10 x 10 Algorithm Performance

Nonlinear LU QR Ratio of Averages
Matrix Average Average (QR / LU)

Q 9.632 44.052 4.574

Q, E 9.829 44.035 4.480

Q, S 10.088 44.643 4.425

Q, E, S 10.166 46.169 4.541

Andrew Binder Smooth Factorizations in Dynamical Systems



Introduction Method Theory Existence Algorithm Comparison Cubic Convergence Applications Conclusion

100 x 100 Time Comparison

Table: Time [ms] Comparison of 100 x 100 Algorithm Performance

Nonlinear LU QR Ratio of Averages
Matrix Average Average (QR / LU)

Q 391.154 1696.066 4.336

Q, E 362.494 1630.445 4.498

Q, S 393.234 1634.839 4.157

Q, E, S 389.039 1650.813 4.243
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Iteration Comparison

Table: Average Iteration Comparison of 10 x 10 Algorithm Performance

Nonlinear LU QR
Matrix Number Time/Iter [ms] Number Time/Iter [ms]

Q 4.40 2.19 4.28 10.29

Q, E 4.44 2.21 4.26 10.32

Q, S 4.51 2.24 4.29 10.42

Q, E, S 4.38 2.32 4.27 10.81
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Newton Steffensen Method

Cubic Convergence Iterative Formula

Applying Steffensen’s acceleration method to Newton’s root
finding method generates an iterative formula with cubic
convergence. Let f (x∗) = 0 and let x0 be sufficiently close to x∗,
then the successive iterative approximations are determined by

xn+1 = xn −
f 2(xn)

f ′(xn)(f (xn)− f (x∗n ))

where

x∗n = xn −
f (xn)

f ′(xn)
.
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Newton Steffensen Method

xn+1 = xn −
f ′2(xn)

f ′′(xn)(f ′(xn)− f ′(x∗n ))

where

x∗n = xn −
f ′(xn)

f ′′(xn)
.

f ′(λ) = (col U ′2,2(λi ))H · col U2,2(λi )

f ′′(λ) = ||U ′2,2(λi )||2F
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Cubic Time Comparison

Table: Time [ms] Comparison of 10 x 10 Cubic Convergence Algorithm
Performance

Nonlinear LU QR Ratio of Averages
Matrix Average Average (QR / LU)

Q 12.323 57.906 4.699

Q, E 12.124 57.504 4.743

Q, S 13.311 62.117 4.667

Q, E, S 12.422 59.012 4.751
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Cubic Iteration Comparison

Table: Average Iteration Comparison of 10 x 10 Cubic Convergence
Algorithm Performance

Nonlinear LU QR
Matrix Number Time/Iter [ms] Number Time/Iter [ms]

Q 3.26 3.775 3.13 18.480

Q, E 3.19 3.799 3.11 18.511

Q, S 3.48 3.823 3.23 19.052

Q, E, S 3.18 3.884 3.12 18.826

Andrew Binder Smooth Factorizations in Dynamical Systems



Introduction Method Theory Existence Algorithm Comparison Cubic Convergence Applications Conclusion

Cost
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Super Quadratic Convergence

Goal

Approximate f ′(x∗n ) using previously calculated values.

Add another term in the Taylor’s Series expansion
approximation.

Solve for f ′(x∗n ).
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Vibrating Train Tracks

Vibrating rail track resting on sleepers (lateral supports)

Initially modeled as a partial differential equation

Discretized and turned into a quadratic eigenvalue problem
with 10 x 10 matrices

Eigenvalues are explicitly known. There exist multiple
eigenvalues.

Algorithm was successful within an error tolerance of 10−15
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Vibrating Train Tracks

U =


0.66 0 0 0 −0.25 0.31 0.31 −0.25 0 0

0 0.66 0 0 0.31 −0.25 0 0 0.31 −0.25
0 0 0.66 −0.25 0 0 0.31 0 −0.25 0.31
0 0 0 0.57 0 0 −0.13 0.31 0.22 0.12
0 0 0 0 0.42 −0.01 0.12 0.22 −0.15 0.12
0 0 0 0 0 0.42 −0.14 0.13 0.11 0.22
0 0 0 0 0 0 0.25 −0.08 0.25 −0.08
0 0 0 0 0 0 0 −0.22 0 0.22
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


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Next Step

Analyze the super quadratic algorithm

Take advantage of matrix structure such as symmetry

Determine all eigenvalues in a region

MATLAB polynomial nonlinear eigenvalue solver
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