A Spectral Analysis of Cyclic and Elementary Abelian Subgroup Lattices

C H R I S T O P H E R M . P . T O M A S Z E W S K I

3 0 J U L Y M M I X

Background Material

Recall the definitions of:

- Group
- Graph
- \circ Subgroup Lattice A graph where each subgroup is a vertex and two subgroups are connected iff one is a subgroup of the other without any intervening subgroups.

Direct Product

- Adjacency Matrix A square, symmetric matrix which represents a graph by placing a 1 in the i-th row and j-th column if $i \sim j$ and a 0 elsewhere.
- Characteristic Polynomial
- o Eigenvalue
- Spectrum The set of eigenvalues of the adjacency matrix of a graph

Background Material

- Recall: Group \longrightarrow Subgroup graph \longrightarrow Adjacency $matrix \longrightarrow$ Characteristic polynomial \longrightarrow Eigenvalues
- For example:

Graph Products

 A *graph product* is a binary operation, denoted "□", on graphs which induces a new graph over the Cartesian product of the graph vertices: *Graph Products*
 A graph product is a binary operation, denoted "a",

on graphs which induces a new graph over the
 Green Cartesian product of the graph vertices:
 GWH = (V(G)×V(H), E(V(G)×V(H)))

where $((g_1, h_1), ($

where $((g_1, h_1), (g_2, h_2)) \in E(V(G) \times V(H))$ iff

$$
((g_1 = g_2) \wedge (h_1 \sim h_2)) \vee ((g_1 \sim g_2) \wedge (h_1 = h_2))
$$

• NB: When one of the graphs is a path graph, such as here, the graph product has the visual effect of "projecting" the other graph into the next dimension.

Cyclic Groups

- A *cyclic group* is a group such that all elements of the group can be expressed as a power of a single element of the group, called a *generator*, of which there may be more than one in the group.
- Every cyclic group of order *n* is isomorphic to (essentially the same as) a group of the form {0, 1, 2, 3... $n-1$ } under addition modulo n , denoted \mathbb{Z}_n^n .

Cyclic Groups (Cont'd)

Toups (Compared to \bigcirc 1 $p_2^{\alpha_2} p_3^{\alpha_3}$ L p_s^{α} Groups (C

Troups (C
 $\frac{a_1}{1} p_2^{\alpha_2} p_3^{\alpha_3} L p_3^{\alpha_1} p_2^{\alpha_2} p_3^{\alpha_3} L p_3^{\alpha_4}$ *s Groups* (Cont'd
 n
 $p_1^{\alpha_1} p_2^{\alpha_2} p_3^{\alpha_3} L p_s^{\alpha_s}$
 $p_1^{\alpha_1} p_2^{\alpha_2} p_3^{\alpha_3} L p_s^{\alpha_s}$ Groups (Cont'd)
 Q
 $\frac{a_1}{p_2^{\alpha_2}p_3^{\alpha_3}L}$ $p_s^{\alpha_s}$ ic Groups (Co
 \sum_{p_1}
 \sum_{p_1}
 \sum_{p_2}
 $p_3^{\alpha_1}$
 $p_2^{\alpha_2}$
 $p_3^{\alpha_3}$
 \sum_{p_1}
 $p_2^{\alpha_4}$
 $p_3^{\alpha_5}$
 \sum_{p_1}
 \sum_{p_2}
 \sum_{p_3}
 \sum_{p_3}
 \sum_{p_3} Froups (Compared to \bigcirc
 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc $p_3^{\alpha_1} p_2^{\alpha_2} p_3^{\alpha_3} L$ is called lic Groups (Cont'd)
 \sum_{p_1}
 \sum_{p_1}
 \sum_{p_2}
 p_3 ^{*n*}
 p_s
 p_s

where

$$
n = p_1^{\alpha_1} p_2^{\alpha_2} p_3^{\alpha_3} L p_s^{\alpha s}
$$

• A group of the form \mathbb{Z}_n is called a *p-group*. *p* **Zn**

Cyclic Groups (Cont'd)

• Theorem:

-1 p_i *i i s* $n = \bigcup_{i=1}^{\infty} P_i^{\alpha_i}$

 That is, every cyclic group is the direct product of pgroups where the orders of the p-groups are the prime-power factors of the order of the cyclic group. velic Groups (Cont'd)
 $\sum_{n} \cong \bigoplus_{i=1}^{s} \sum_{p_i^{\alpha_i}}$

explic group is the direct product of p-
the orders of the p-groups are the

actors of the order of the cyclic group.

Graph Product – Direct Product

• Theorem:

- That is, the subgroup lattice of a direct product is equal to the graph product of the component subgroup lattices if the groups are coprime.
- Because the component p-groups of a cyclic group are always pairwise coprime, the subgroup lattice of every cyclic group is the graph product of all its component p-group subgroup lattices. Graph Product – Direct Product

Theorem:
 $\Gamma(G \oplus H) \cong \Gamma(G)$ W $\Gamma(H)$ if gcd($|G|, |H|$) = 1

That is, the subgroup lattice of a direct product is

equal to the graph product of the component

subgroup lattices if the groups

Graph Product – Direct Product (Cont'd)

 Because the subgroup lattice of every p-group is a path graph, this means that the subgroup lattice of every cyclic group is a simple cubic lattice in *n* dimensions, where n is the number of distinct pgroups which produce the cyclic group.

Graph Product – Adjacency Matrix

 Taking a graph product has a predictably regular effect on the adjacency matrix of the product graph:

raph Product – Adjacency Matrix
\na graph product has a predictably reguli
\nin the adjacency matrix of the product gr
\n
$$
A_3 \text{ W}B_3 = \begin{pmatrix} A & b_{1,2}I_3 & b_{1,3}I_3 \\ b_{2,1}I_3 & A & b_{2,3}I_3 \\ b_{3,1}I_3 & b_{3,2}I_3 & A \end{pmatrix}
$$
\nthe adjacency matrix of the product gra
\nmatrix composed of one of the adjacent
\nes along the diagonal and identities of eq
\nion where the other matrix' entries equa

• That is, the adjacency matrix of the product graph is a *block matrix* composed of one of the adjacency matrices along the diagonal and identities of equal dimension where the other matrix' entries equal 1. ph Product – Adjacency Matrix
graph product has a predictably regular
the adjacency matrix of the product gr

3 $WB_3 = \begin{pmatrix} A & b_{1,2}I_3 & b_{1,3}I_3 \ b_{2,1}I_3 & A & b_{2,3}I_3 \ b_{3,1}I_3 & b_{3,2}I_3 & A \end{pmatrix}$

are adjacency matrix of *A b I b I* aph Product – Adjacency Matrix
 A graph product has a predictably regular
 A a diacency matrix of the product graph
 A_3 WB₃ = $\begin{pmatrix} A & b_{1,2}I_3 & b_{1,3}I_3 \\ b_{2,1}I_3 & A & b_{2,3}I_3 \\ b_{3,1}I_3 & b_{3,2}I_3 & A \end{pmatrix}$

the a $\det - \text{Adjacency Matrix} \ \text{ln} \ \text{but has a predictably regular} \ \text{not matrix of the product graph:} \ A \quad b_{1,2}I_3 \quad b_{1,3}I_3 \ b_{2,1}I_3 \quad A \quad b_{2,3}I_3 \ b_{3,1}I_3 \quad b_{3,2}I_3 \quad A \ \text{by matrix of the product graph is} \ \text{posed of one of the adjacency} \ \text{diagonal and identities of equal} \ \text{e other matrix' entries equal 1.}$ oduct – Adjacency Matrix

conduct has a predictably regular

acency matrix of the product graph:
 $=\begin{pmatrix} A & b_{1,2}I_3 & b_{1,3}I_3 \ b_{2,1}I_3 & A & b_{2,3}I_3 \ b_{3,1}I_3 & b_{3,2}I_3 & A \end{pmatrix}$

cency matrix of the product graph is

comp uct – Adjacency Matrix

oduct has a predictably regular

ency matrix of the product graph:
 $\begin{pmatrix} A & b_{1,2}I_3 & b_{1,3}I_3 \ b_{2,1}I_3 & A & b_{2,3}I_3 \ b_{3,1}I_3 & b_{3,2}I_3 & A \end{pmatrix}$

ncy matrix of the product graph is

aposed of on

Tridiagonal Block Matrices

- Because p-group adjacency matrices are always tridiagonal, (non-zero entries are restricted to the diagonal, superdiagonal, and subdiagonal) the adjacency matrix of arbitrarily many p-groups is always a tridiagonal block matrix.
- Thus, every cyclic group adjacency matrix has a tridiagonal block form.
- There is a formula to give the determinant of such matrices. [Molinari, 2008]

Prime Result

• Theorem: Given any cyclic group, $\mathbf{Z}_n \cong \bigoplus \mathbf{Z}_{\mathbb{Z}_n}$, its eigenvalues are $\sum_{i=1}^{\infty} p_i^{\alpha_i}$, $\sum_{i=1}^{\infty}$ *i s* $n = \bigcup_{i=1}^{\infty} \mathbf{Z}_{p_i^{\alpha_i}}$, its $\boldsymbol{Z}_n \cong \bigoplus_{i=1}^s \boldsymbol{Z}_{p_i^{\alpha_i}}$, its
=0

$$
\sum_{i=1}^s \{2\cos(\frac{j\pi}{\alpha_i+1})\}_{j=0}^{\alpha_i}
$$

- That is, its spectrum is the Cartesian sum of the spectra of all its component p-groups. Prime Result

any cyclic group, $\mathbf{Z}_n \approx \bigoplus_{i=1}^s \mathbf{Z}_i$

{ $2 \cos(\frac{j\pi}{\alpha_i+1})\}_{j=0}^{\alpha_i}$

cum is the Cartesian sum of component p-groups.

atter for all cyclic groups.
- This settles the matter for all cyclic groups.

Elementary Abelian Groups

An *elementary Abelian group* is a group of the form

$$
(\mathbf{Z}_{p})^{n} = \bigoplus_{i=1}^{n} \mathbf{Z}_{p}
$$

• These are interesting because \mathbb{Z}_n is a field, which means that $(\mathbf{Z}_p)^n$ is a finite vector space where subgroups correspond to subspaces. This allows us to more easily determine the subgroup lattice structure of these groups and also their spectra. entary Abelian $grou$
 $(Abelian group)$
 $(\mathbf{Z}_p)^n = \bigoplus_{i=1}^n g(v_i)$
 (gv_i) is a finite victor in the summer the summer that **h**
z \bigcap_{p} *p* $\bigcap_{i=1}^{n}$ *Z* \bigcap_{p} *<i>i* $\bigcap_{i=1}^{n}$ **Z** \bigcap_{p}
sting because Z_{p} is a field, which
 \bigcap_{p} is a finite vector space where
spond to subspaces. This allows us to
rmine the subgroup *p* (*Z*_{*p*})^{*n*} = $\bigoplus_{i=1}^{n}$ *Z*_{*p*}
teresting because *Z*_{*p*} is a finite vector space correspond to subspaces. The determine the subgroup laterminate *p*

Elementary Abelian Groups (Cont'd)

- Elementary Abelian groups are also very interesting because they are the first case of the larger family of groups, $(\mathbf{Z}_{n^n})^m$, the carefully chosen subgroups of which, for distinct *p*, comprise all the coprime factors of any Abelian group. mentary Abelian Groups (Cont'd)

ary Abelian groups are also very interesting

they are the first case of the larger family of
 $(\mathbf{Z}_{p^s})^m$, the carefully chosen subgroups of

or distinct p, comprise all the coprime fa Elementary Abelian Groups (Cont'd)
 Elementary Abelian groups are also very interesting

because they are the first case of the larger family of

groups, $(\mathbb{Z}_{\rho})^m$, the carefully chosen subgroups of

which, for dist *P* **Elementary Abelian Groups (Cont'd)**
 P Elementary Abelian groups are also very interesting because they are the first case of the larger family of groups, $(\mathbf{Z}_p,)^m$ **, the carefully chosen subgroups of which, for** $\begin{array}{l} \displaystyle{\text{matrix A}}\\ \text{tary Abelian} \\ \text{they are the}\\ (\textbf{Z}_{p^n})^m, \text{the c:} \\ \text{or distinct } p, \text{belian} \end{array}$ m_{th} \sim \sim \sim p^n , \sum \mathbf{Z}_{n} ⁿ, the carefu
- Results:

\n- • Results:
\n- •
$$
A_{(\mathbf{z}_p)^3} = (p - \lambda^2)^{(p^2 + p)} (2\lambda^4 - 7p^2\lambda^2 - 6p\lambda^2 - 3\lambda^2 + 4p^4 + 3p^3 - 4p^2 - 9p - 4)
$$
\n- • This gives the spectrum for all groups of the form $(\mathbf{Z}_p)^3$
\n- • **This gives** the spectrum for all groups of the form $(\mathbf{Z}_p)^3$
\n

- This gives the spectrum for all groups of the form **Z**
- These matrices are also tridiagonal in general, so this is promising.

What's Next

- Continue exploring block matrix methods in solving all elementary Abelian groups.
- Expand upon these methods to solve all Abelian groups.
- Solve dihedral groups and other semidirect products.
- What can be said about non-isomorphic groups with cospectral subgroup lattices?
- Spectra of subring lattices?
- And for something completely different: what groups have subgroup lattices of genus 1 (can be drawn on a torus without intersection)?