Generalized Derangement Graphs

Hannah Jackson

➢ If *P* is a set, the bijection *f: P* → *P is a permutation* of *P*.

➢ Permutations can be written in *cycle notation* as the product of disjoint cycles: For example, (12)(34) is the permutation which sends $1\rightarrow 2$, $2\rightarrow 1$, $3\rightarrow 4$, $4\rightarrow 3$.

 \triangleright The symmetric group S_n is the group of all possible permutations of *n* objects. Ex: $S_3 = \{e, (12), (13), (23), (123), (132)\}\$

 \triangleright If $\sigma \in S_n$, σ induces a permutation $\sigma_{(k)}$ on *k*-tuples by $\sigma_{(k)}(\{a_1, ..., a_k\}) = \{\sigma(a_1), ..., \sigma(a_k)\}.$

Ex: The permutation (1234) induces a permutation on *2*-tuples (pairs) as follows:

Permutation of *2*-tuples $(1234)_{(2)}(\{1,2\}) = \{2,3\}$ $(1234)_{(2)}(\{1,3\}) = \{2,4\}$ $(1234)_{(2)}(\{1,4\}) = \{2,1\} = \{1,2\}$ $(1234)_{(2)}(\{2,3\}) = \{3,4\}$ $(1234)_{(2)}(\{2,4\}) = \{3,1\} = \{1,3\}$ $(1234)_{(2)}(\{3,4\}) = \{4,1\} = \{1,4\}$ ➢ A permutation is an *ordinary derangement* (the set of which is denoted \mathcal{D}_n) if it has no fixed points.

 $[\mathcal{D}_n := {\sigma \in S_n | \sigma(x) \neq x, \forall x \in [n]}]$

➢ A permutation is a *k-derangement* (the set of which is denoted $\mathcal{D}_{k,n}$) if it leaves no *k*tuple fixed.

 \triangleright The number of *k*-derangements in S_n is denoted $D_k(n)$.

➢ Whether a permutation is a *k*-derangement or not depends only on its cycle structure. [For example, if the permutation (1234) is a *k*-derangement, then (1324), (1243), (2134), etc. will be as well.]

 \triangleright In order for the permutations of a particular cycle structure to be *k*-derangements in S_n , the cycle structure must not partition *k.*

Ex: (12)(34) is a 3-derangement in S_4 , but $(12)(3)(4)$ is not, since $\{2,1\}$ is a partition of 3.

Graphs!

 \triangleright The *k-derangment graph* $\Gamma_{k,n}$ is the graph with the elements of S_n as its vertices, and an edge between two vertices iff they are *k*-derangements of one another.

1-derangement graph in S_3 .

Properties of *k*-derangement graphs

 $\mathbf{C} \Gamma_{k,n}$ is $D_k(n)$ -regular.

 \int $\Gamma_{k,n}$ is connected for *n* > 3.

 $\sum_{k,n}$ is Hamiltonian (*n* > 3).

 $\Gamma_{k,n}$ is Eulerian if and only if *k* is even or *k* and *n* are both odd. (*n* > 3).

Connected

- \triangleright To show $\Gamma_{k,n}$ was connected we adapted a proof by Paul Renteln.
	- ⚫ Every permutation is the product of adjacent transpositions (*h,h+*1)
	- ⚫ Every adjacent transposition is the product of two derangements

 \triangleright This means that the elements of $\mathcal{D}_{k,n}$ generate S_n , and so there's a path between the identity and every vertex of $\Gamma_{k,n}$. Thus $\Gamma_{k,n}$ is connected.

Eulerian

- ➢ Theorem: A graph *G* is Eulerian iff:
	- ⚫ *G* is connected
	- ⚫ Each vertex of *G* has even degree

➢ Lemma 1.1: If a permutation's cycle decomposition includes a cycle with length greater than 2, there are an even number of permutations with that cycle structure.

Hamiltonian

- \triangleright To prove that $\Gamma_{k,n}$ is Hamilitonian, we utilized several existing theorems:
	- ⚫ Jackson's Theorem: A 2-connected *h*-regular graph with no more than 3*h* vertices is Hamiltonian
	- ⚫ Watkins' Theorem: If *G* is a connected, vertex transitive graph with vertex degree *d*, then the connectivity of *G* is at least 2*d*/3
- \triangleright We still need to prove that $\Gamma_{k,n}$ has no more than $3D_k(n)$ vertices, but the numerical evidence shows that this is true.

Hamiltonian (cont.)

 \triangleright It has been proven that ordinary derangement graphs have at most $3D_1(n)$ vertices.

 \triangleright To show that $\Gamma_{k,n}$ has no more than 3 $D_k(n)$ vertices, it is sufficient to show that

 $D_1(n) \leq D_k(n) \,\forall k, n$

Hamiltonian (cont.)

 \triangleright In order to show this, we are trying to find a 1-1 mapping from $D_1(n)$ to a subset of $D_k(n)$.

 \triangleright There are some cycle structures which will both 1derangements and *k*-derangements, so we map permutations with those cycle structures to themselves.

➢ So all we need to do is find a 1-1 mapping from the set of permutations which are 1-derangements but not *k*derangements to a subset of the set of permutations which are 3-derangements but not 1-derangements.

THIS IS HARD.

Other Stuff

ρ Independence number = k!(n-k)!

⚫ We've got a proof written which gives us the lower bound for the independence number, but we need to know the clique number to get an upper bound.

\triangleright Clique number = ??

• We believe that the clique number of $\Gamma_{k,n}$ will be $\binom{n}{k}$ for either an odd or prime *n*.

 \triangleright Chromatic number = $\binom{n}{k}$

• We found that the maximal independent set of $\Gamma_{k,n}$ containing the identity forms a group, and the rest of the maximal independent sets are its cosets.