Generalized Derangement Graphs

Hannah Jackson

If P is a set, the bijection f: P → P is a permutation of P.

➢ Permutations can be written in cycle notation as the product of disjoint cycles: For example, (12)(34) is the permutation which sends 1→2, 2→1, 3→4, 4→3.

> The symmetric group S_n is the group of all possible permutations of *n* objects. Ex: $S_3 = \{ e, (12), (13), (23), (123), 132) \}$ > If $\sigma \in S_n$, σ induces a permutation $\sigma_{(k)}$ on *k*-tuples by $\sigma_{(k)}(\{a_1, ..., a_k\}) = \{\sigma(a_1), ..., \sigma(a_k)\}.$

Ex: The permutation (1234) induces a permutation on *2*-tuples (pairs) as follows:

Permutation of 2-tuples $(1234)_{(2)}(\{1,2\}) = \{2,3\}$ $(\underline{1234})_{(2)}(\{1,3\}) = \{2,4\}$ $(1234)_{(2)}(\{1,4\}) = \{2,1\} = \{1,2\}$ $(\overline{1234})_{(2)}(\overline{\{2,3\}}) = \overline{\{3,4\}}$ $(1234)_{(2)}(\{2,4\}) = \{3,1\} = \{1,3\}$ $(1234)_{(2)}({3,4}) = {4,1} = {1,4}$ A permutation is an ordinary derangement (the set of which is denoted D_n) if it has no fixed points.

 $\left[\mathcal{D}_n := \left\{ \sigma \in S_n | \sigma(x) \neq x, \forall x \in [n] \right\} \right]$

A permutation is a k-derangement (the set of which is denoted D_{k,n}) if it leaves no ktuple fixed.

> The number of *k*-derangements in S_n is denoted $D_k(n)$.

 Whether a permutation is a *k*-derangement or not depends only on its cycle structure.
[For example, if the permutation (1234) is a *k*-derangement, then (1324), (1243), (2134), etc. will be as well.]

In order for the permutations of a particular cycle structure to be k-derangements in S_n, the cycle structure must not partition k. Ex: (12)(34) is a 3-derangement in S₄, but (12)(3)(4) is not, since {2,1} is a partition of 3.

Graphs!

> The *k*-derangment graph $\Gamma_{k,n}$ is the graph with the elements of S_n as its vertices, and an edge between two vertices iff they are *k*-derangements of one another.

1-derangement graph in S_3 .

Properties of *k*-derangement graphs

- $\Gamma_{k,n}$ is $D_k(n)$ -regular.
- $\Gamma_{k,n}$ is connected for n > 3.
- $\Gamma_{k,n}$ is Hamiltonian (*n* > 3).

• $\Gamma_{k,n}$ is Eulerian if and only if k is even or k and n are both odd. (n > 3).

Connected

- > To show $\Gamma_{k,n}$ was connected we adapted a proof by Paul Renteln.
 - Every permutation is the product of adjacent transpositions (*h*,*h*+1)
 - Every adjacent transposition is the product of two derangements

This means that the elements of D_{k,n} generate S_n, and so there's a path between the identity and every vertex of Γ_{k,n}. ThusΓ_{k,n} is connected.

Eulerian

- > Theorem: A graph *G* is Eulerian iff:
 - G is connected
 - Each vertex of G has even degree

Lemma 1.1: If a permutation's cycle decomposition includes a cycle with length greater than 2, there are an even number of permutations with that cycle structure.

Hamiltonian

- > To prove that $\Gamma_{k,n}$ is Hamilitonian, we utilized several existing theorems:
 - Jackson's Theorem: A 2-connected *h*-regular graph with no more than 3*h* vertices is Hamiltonian
 - Watkins' Theorem: If G is a connected, vertex transitive graph with vertex degree d, then the connectivity of G is at least 2d/3

> We still need to prove that $\Gamma_{k,n}$ has no more than $3D_k(n)$ vertices, but the numerical evidence shows that this is true.

Hamiltonian (cont.)

It has been proven that ordinary derangement graphs have at most 3D₁(n) vertices.

> To show that $\Gamma_{k,n}$ has no more than $3D_k(n)$ vertices, it is sufficient to show that

 $D_1(n) \le D_k(n) \,\forall k, n$

Hamiltonian (cont.)

> In order to show this, we are trying to find a 1-1 mapping from $D_1(n)$ to a subset of $D_k(n)$.

There are some cycle structures which will both 1derangements and k-derangements, so we map permutations with those cycle structures to themselves.

So all we need to do is find a 1-1 mapping from the set of permutations which are 1-derangements but not kderangements to a subset of the set of permutations which are 3-derangements but not 1-derangements.

THIS IS HARD.

Other Stuff

Independence number = k!(n-k)!

 We've got a proof written which gives us the lower bound for the independence number, but we need to know the clique number to get an upper bound.

Clique number = ??

• We believe that the clique number of $\Gamma_{k,n}$ will be $\binom{n}{k}$ for either an odd or prime *n*.

> Chromatic number = $\binom{n}{k}$

• We found that the maximal independent set of $\Gamma_{k,n}$ containing the identity forms a group, and the rest of the maximal independent sets are its cosets.