Generalized Derangements

Anthony Fraticelli Missouri State University REU July 30, 2009

Advisor: Dr. Les Reid

Overview

- In this presentation we will address the following: \circ
	- Introductory definitions \bigcirc
	- Classic derangements \bigcirc
	- *k*-derangements \bigcirc
	- Exponential generating functions \bigcirc
	- Limits \bigcap
	- Rencontres numbers \bigcap
	- k-rencontres numbers Ω

Introductory Definitions

- Permutation A mapping of elements from a set to elements of \bigcirc the same set. Ex. $\sigma : \{1, 2, 3, 4, 5\} \rightarrow \{2, 5, 4, 3, 1\}$
- Cycle A permutation of the elements of some set *X* which maps \bigcap the elements of some subset *S* to each other in a cyclic fashion, while fixing all other elements.

$$
\begin{array}{cccccc}\n1 & 2 & 3 & 4 & 5 \\
\downarrow & \downarrow & \downarrow & \downarrow & = (125)(34) \\
2 & 5 & 4 & 3 & 1\n\end{array}
$$

- Partition A set of nonempty subsets of *X* such that every element \bigcirc *x* in *X* is in exactly one of these subsets.
	- Ex. $\{\{1,2,3\}, \{1,2\}\{3\}, \{1\}\{2\}\{3\}\}\$ Ω

What Are Classic Derangements?

- The classic derangement problem asks, "How many permutations of *n* \circ objects leave no elements fixed?"
	- For example, "If six students in a class all take a test, how many ways can the \bigcirc teacher pass back their exams so that none of the students receive their own test?"
- The solution to this problem can be found by using one of the well \circ known classic derangement formulas.
	- D_n satisfies the following recurrence: Or explicitly $D_n = n! \sum_{i=1}^{n} \frac{(-1)^i}{i!}$ (1) $D_0 = 1$ and $D_1 = 0$, $D_n = (n-1)(D_{n-1} + D_{n-2})$
- Using (1) it is clear to see that D_6 = 265. \circ
- \circ From here we can compute the probability that a permutation is a derangement by dividing by the total number of possible permutations, *n*! Therefore, the probability that no student receives their own test in our example is $D_{6}/6! \approx 0.368$
- $\lim_{n\to\infty}\frac{D_n}{n!}=\frac{1}{e}\approx .3679$ It is also well known that: \circ

What Are *k*-Derangements?

Definition: \bigcap

Let $[n] = \{1, 2, 3, ..., n\}$ and S_n be the symmetric group of all permutations of [n]. Let σ be a permutation of [n] within S_n . Then, let P_r be the set of all permutations in S_n whose cycle structure is r. [Ex. $P_{\{2,1\}} = \{(12), (13), (23)\}\$] Also, let $A^{(k)}$ be the set of unordered k-tuples with elements from A. [Ex. $A = \{1, 2, 3\}, A^{(2)} = \{\{1, 2\}, \{1, 3\}, \{2, 3\}\}\$ Therefore, since a permutation of the elements of $[n]$ induces a permutation of unordered k-tuples, a permutation $\sigma_{(k)} \in S_n$ is a k-derangement $D_{(k,n)}$ if $\{\sigma_{(k)}(x) \neq x \mid \forall x \in [n]^{(k)}\}$

- In other words, a permutation is a *k* -derangement if its cycle \circ decomposition does not have any cycles whose lengths partition *k*.
	- For example, $P_{\{2,2\}}$ is a 3-derangement in S_4 since neither of the cycles of \bigcirc length 2 can partition *k*=3. However, *P*{2,1,1} is not a 3-derangement since either combination of the cycles of length {2,1} partition *k*=3.
- \circ Being able to calculate *k*-derangements will allow us to ask questions such as, "How many ways can a teacher pass back a test such that no two students receive their own test or each others tests?"

Calculating *k*-Derangements

- To calculate the number of *k*-derangements by hand:
	- Start with the number of all permutations *n*! \bigcirc
	- Divide by the length of each partition. \bigcirc
	- Distinguish between repeated partitions by dividing by *r*! \bigcirc where *r* is the number of times each partition is repeated.
	- Repeat this process and sum over all acceptable \bigcap permutations of *P^r* .

$$
\begin{array}{ccc}\n\text{O} & \text{Ex. } D_{(2,6)} & P_{\{6\}} & P_{\{5,1\}} & P_{\{3,3\}} \\
\frac{6!}{6} = 120 & \frac{6!}{5 \cdot 1} = 144 & \frac{6!}{3 \cdot 3 \cdot 2!} = 40 \\
D_{(2,6)} = 120 + 144 + 40 = 304\n\end{array}
$$

Table of *k*-Derangements

 $D_{(k,n)} = D_{(n-k,n)}$

Exponential Generating Functions

- A generating function is a formal power series whose \bigcirc coefficients encode information about a sequence a_n.
- Exponential generating functions are represented as: \bigcirc $EG(a_n; x) = \sum_{n=0}^{\infty} a_n \frac{x^n}{n!} = a_0 + a_1 \frac{x}{1!} + a_2 \frac{x^2}{2!} + a_3 \frac{x^3}{3!} \ldots$
- Proposition: Let C_l represent cycles of length l. Then the exponential \bigcirc *generating function for C^l is the power series, centered at 0, whose* coefficients of x^n represent n numbers of C_l .

$$
EG(C_l; x) = (1 + x^l/l + \frac{(x^l/l)^2}{2!} + \frac{(x^l/l)^3}{3!} + \dots) = e^{\left(\frac{x^l}{l}\right)}
$$

 $EG(C_1; x) = e^x$ $EG(C_2; x) = e^{(x^2/2)}$ $EG(C_3; x) = e^{(x^3/3)}$

$EG(P; x)$ and $EG(D_{(1,n)}; x)$

Since permutations can be represented as a product of disjoint \bigcirc cycles, the exponential generating function for all permutations is simply the multiplication of the EG's for all of the cycles.

$$
EG(P; x) = e^x e^{(x^2/2)} x^{(x^3/3)} \dots = \frac{1}{1-x}
$$

Also, since classic derangements cannot contain permutations \bigcap whose cycle decompositions contain cycles of length 1, we can remove the EG for 1-cycles to obtain the EG for classic derangements.

$$
EG(D_{(1,n)};x) = e^{(x^2/2)}x^{(x^3/3)}\cdots = \frac{e^{-x}}{1-x}
$$

EG's for k-Derangements

Just as we found the EG for classic derangements, we can find the EG's \circ for *k*-derangements by removing from the EG of all permutations those cycles whose lengths partition *k.*

$$
EG(D_{(1,n)}; x) = \frac{e^{-x}}{1-x}
$$

\n
$$
EG(D_{(2,n)}; x) = \frac{1}{1-x} e^{-x - \frac{x^2}{2}} (1+x)
$$

\n
$$
EG(D_{(3,n)}; x) = \frac{1}{1-x} e^{-x - \frac{x^2}{2} - \frac{x^3}{3}} (e^{\frac{x^2}{2}} + x + \frac{x^2}{2!})
$$

\n
$$
EG(D_{(4,n)}; x) = \frac{1}{1-x} e^{-x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4}} (e^{\frac{x^3}{3}} (1 + \frac{x^2}{2}) + x(1 + \frac{x^2}{2}) + \frac{x^2}{2!} + \frac{x^3}{3!})
$$

We have found the EG's for k-derangements up to k=8, however we have \circ not yet been able to generalize a pattern from the EG's since they become increasingly complex.

Formulas for 2-Derangements

O By performing the series expansion on

$$
EG(D_{(2,n)};x) = \frac{1}{1-x}e^{-x-\frac{x^2}{2}}(1+x)
$$

it can be shown that:

$$
D_{(2,n)} = n! \sum_{i=0}^{n} \left(\sum_{k=\lceil \frac{n}{2} \rceil}^{n} \frac{(-1)^k}{(n-k)!(2k-n)!2^{(n-k)}} + \sum_{k=\lceil \frac{n-1}{2} \rceil}^{n-1} \frac{(-1)^k}{((n-1)-k)!(2k-(n-1))!2^{((n-1)-k)}} \right)
$$

\n
$$
O \quad D_{(2,n)} \text{ also satisfies the following recurrence:}
$$

\n
$$
D_{(2,0)} = 1 \quad D_{(2,1)} = 1 \quad D_{(2,2)} = 0 \quad D_{(2,3)} = 2
$$

\n
$$
D_{(2,n)} = D_{(2,n-1)} + (n-1)(n-3)D_{(2,n-2)} + (n-1)(n-2)(n-3)D_{(2,n-4)}
$$

Limits of EG's

 \bigcap Lemma If $\frac{f(x)}{(1-x)} = \sum q_n x^n$, then $\lim_{n \to \infty} q_n = f(1)$. Proof \bigcap Let $f(x) = (b_0 + b_1x + b_2x^2 \dots)$ then it follows that: $f(x) \frac{1}{1-x} = (b_0 + b_1 x + b_2 x^2 \dots)(1 + x + x^2 + x^3 + \dots)$ $= b_0 + (b_0 + b_1)x + (b_0 + b_1 + b_2)x^2...$ therefore $q_n = (b_0 + b_1 + b_2 + \cdots + b_n)$ $\lim_{n\to\infty} q_n = \sum b_i = f(1)$

Limits of D*(k,n)*/*n*!

Using the previous lemma, we can find the limits of the first few values of \circ $D_{(k,n)}/n!$ as *n* goes to infinity.

$$
\lim_{n \to \infty} \frac{D_{(1,n)}}{n!} = \frac{1}{e} \approx .367879
$$

$$
\lim_{n \to \infty} \frac{D_{(2,n)}}{n!} = \frac{2}{e^{3/2}} \approx .44626
$$

$$
\lim_{n \to \infty} \frac{D_{(3,n)}}{n!} = \frac{3}{2e^{11/6}} + \frac{1}{e^{4/3}} \approx .503417
$$

$$
\lim_{n \to \infty} \frac{D_{(4,n)}}{n!} = \frac{13}{6e^{25/12}} + \frac{3}{2e^{7/4}} \approx .530442
$$

$$
\lim_{n \to \infty} \frac{D_{(5,n)}}{n!} \approx .558525
$$

 $\lim_{n\to\infty}\frac{D_{(6,n)}}{n!}\approx .574941$

$$
\lim_{n \to \infty} \frac{D_{(7,n)}}{n!} \approx .591519
$$

$$
\lim_{n \to \infty} \frac{D_{(8,n)}}{n!} \approx .602722
$$

$$
\text{Conjecture} - \lim_{k \to \infty} \lim_{n \to \infty} \frac{D_{(k,n)}}{n!} = 1
$$

Rencontres Numbers

- Definition For $n \ge 0$ and $0 \le r \le n$, the rencontres number $D_{(r,n)}$ \circ is the number of permutations of [*n*] that have exactly *r* fixed points.
- In other words, rencontres numbers specify how many \bigcirc permutations leave *r* number of 1-tuples fixed.
- Note *D(0,n)* are classic derangements. \bigcirc
- Known formulas for rencontres numbers include: \bigcap

$$
\circ \quad D_{(r,n)} = \binom{n}{r} \cdot D_{(0,n-k)}
$$

$$
\circ\quad EG(D_{(r,n)};x)=\frac{x^r}{r!}\frac{e^{-x}}{1-x}
$$

*k-*Rencontres Numbers

- Definition For $n \ge 0$, $0 \le r \le n/k$, and, $0 \le k \le n$ *k*-rencontres \circ numbers D*(r,k,n)* are the number of permutations that leave exactly *r* number of *k*-tuples fixed.
- Note *D(0,k,n)* are *k*-derangements.
- We have found EG's for the following: \bigcirc

$$
EG(D_{(r,1,n)}; x) = \frac{x^r}{r!} \frac{e^{-x}}{1-x}
$$

$$
EG(D_{(r,2,n)}; x) = \frac{1}{1-x} e^{-x - \frac{x^2}{2}} \sum_{i=0}^{\infty} \frac{(x^2/2)^{r - \binom{i}{2}}}{(r - \binom{i}{2})!} \frac{x^i}{i!}
$$

$$
EG(D_{(r,3,n)}; x) =
$$

\n
$$
\frac{1}{1-x}e^{-x-\frac{x^2}{2}-\frac{x^3}{3}}\left(\frac{(x^3/3)^r}{r!}e^{(x^2/2)}+\sum_{i=1}^{r+2}\sum_{j=0}^{\lceil\frac{(-i)}{3}\rceil}(\frac{(x^3/3)^{r-(ji+\binom{i}{3}))}}{(r-(ji+\binom{i}{3}))!}\frac{(x^2/2)^j}{j!}\frac{x^i}{i!}\right)
$$

Unsolved Problems

- \bigcirc Prove $\lim_{k \to \infty} \lim_{n \to \infty} \frac{D_{(k,n)}}{n!} = 1$
- \bigcirc Prove $D_{(k,n)} \equiv 0 \mod k$
- Find a recursive formula, explicit formula, or \bigcirc exponential generating function for all *k*-derangements.
- Find a recursive formula, explicit formula, or \circ exponential generating function for all *k*-rencontres numbers.