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Fourier Analysis on the Circle

Definition

A family of kernels {Kn}∞n=1 is said to be a family of good kernels
if it satisfies the following properties:

(i)
1

2π

∫ π

−π
Kn(x)dx = 1 ∀n ∈ N

(ii) ∃M > 0 such that ∀n ∈ N
∫ π

−π
|Kn(x)|dx ≤ M

(iii) ∀ δ > 0

∫
δ≤|x |≤π

|Kn(x)| dx → 0 as n→∞
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The Dirichlet Kernel

Definition

The nth Dirichlet kernel Dn(x) is given by
n∑

k=−n
e ikx

Proposition

Dn(x) =
n∑

k=−n
e ikx = 1 +

n∑
k=1

cos(kx) =
sin((n + 1

2)x)

sin(x + 1
2)

Proposition

The Dirichlet kernel is not a good kernel.
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Fourier Series and Fourier Coefficients

Definition

The nth Fourier coefficient f̂ (n) is given by the integral

1

2π

∫ π

−π
f (x)e−inxdx

Definition

The nth-partial sum of the Fourier series of f is given by

SN(f )(x) =
N∑

n=−N
f̂ (n)e inx
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Lemma

The nth-partial sum can be written as a convolution of the original
function with the nth Dirichlet kernel. That is,

SN(f )(x) =
N∑

n=−N
f̂ (n)e inx
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The Fejér kernel

Definition

We define the nth Fejér kernel to be

Fn(x) =
1

n

n−1∑
k=0

Dk(x)

Proposition

The Fejér kernel is a good kernel.
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Approximation to the identity

Theorem

Let {Kn}∞n=1 be a family of good kernels, and f an integrable
function on the circle. Then

lim
n→∞

(f ∗ Kn)(x) = f (x)

whenever f is continuous at x. If f is continuous everywhere, then
the above limit is uniform.
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Approximation to the identity

Proof.

Let x be a point of continuity of f . Consider

|(f ∗ Kn)(x)− f (x)| = | 1

2π

∫ π

−π
Kn(y) f (x − y) dy − f (x)|

= | 1

2π

∫ π

−π
Kn(y)[f (x − y)− f (x)]dy |

≤ 1

2π

∫ π

−π
|Kn(y)[f (x − y)− f (x)]|dy

≤ 1

2π

∫
|y |<δ

|Kn(y)f (x − y |) dy +
1

2π

∫
|y |≥δ

|Kn(y)f (x)|dy

≤ Mε

2π
+

B

2π

∫
|y |≥δ

Kn(y)dy
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Numerical Approach for General NEP

Essential tools (Schur, Generalized Schur) not available

Sensitivity analysis, Round-off error analysis under study

MATLAB can solve polynomial eigenvalue problems

Common approach for polynomial EP is Linearization:[
A(λ) 0

0 I

]
= E (λ)(B − λC )F (λ).

det E (λ) = K1 6= 0 det F (λ) = K2 6= 0
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Numerical Approach for General NEP

Example
A(λ)x = (Mλ2 + Cλ+ K )x = 0.

Let u = λx . Then, λMu + Cu + Kx = 0.

Thus, [
O I
−K −C

] [
x
u

]
− λ

[
I 0
0 M

] [
x
u

]
= 0.
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Numerical Approach for General NEP

Division of Numerical Methods

Linearization (polynomial, rational)

Treat it in its original form

Methods for dense, small problems

Methods for sparse large problems

Structure-preserving methods
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LU Factorization

[A b] =

 1 4 7 −9
2 5 8 2
3 6 10 7

 R2−2R1

R3−3R1−→

 1 4 7 −9
0 −3 −6 20
0 −6 −11 34


Similarly, we have 1 4 7 −9

0 −3 −6 20
0 −6 −11 34

 R3−2R2−→

 1 4 7 −9
0 −3 −6 20
0 0 1 −6


The new system obtained is triangular:

x + 4y + 7z = −9
−3y − 6z = 20

z = −6
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LU Factorization

In general, for an n × n matrix A, we have that

Ln−1 · · · L2L1A = U, (3.1)

so that

A = LU, with L = (Ln−1 · · · L2L1)−1.

If some pivots are zero, then PA = LU.
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RRLU Factorization

General A

P1AP2 = LU

=

[
L11 0
L21 I

] [
U11 U12

0 U22

]

Rank Deficient A

P1AP2 = LU

=

[
L11 0
L21 I

] [
U11 U12

0 0

]
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RRLU Factorization of a Matrix Function

Theorem

Let A(λ) ∈ C 2 be a n × n matrix such that A(λ0) has a column
rank of n −m, m ≤ n − 1. Assume there are permutation matrices
P1, P2 such that P1A(λ0)P2 = L0U0, where L0 is a block unit
lower triangular matrix and U0 is a block upper triangular matrix.
Then, there is a neighborhood N(λ0) such that

P1A(λ)P2 = L(λ)U(λ), ∀ λ ∈ N(λ0),

with L(λ0) = L0, U(λ0) = U0; L(λ) a block unit lower triangular
matrix, U(λ) a block upper triangular matrix, with U22(λ)
differentiable at λ = λ0.
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Main Idea

Let λ∗ be an eigenvalue of A(λ)n×n with rank A(λ∗) = n −m

P∗1A(λ∗)P∗2 = L(λ∗)U(λ∗),

where

U(λ∗) =

[
U11(λ∗) U12(λ∗)

0 0

]
.

Let λ0 be close to λ∗, and P0
1A(λ0)P0

2 = L(λ0)U(λ0), with

U(λ0) =

[
U11(λ0) U12(λ0)

0 U22(λ0)

]
, ‖U22‖F � ‖U11 U12‖F .

From the theorem above,

P1A(λ)P2 = L(λ)U(λ), ∀λ ∈ N(λ0).
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Determining Nonlinear Eigenvalues Through Minimization

Goal

Improve λ0 as an approximation to λ∗.

Plan

Give initial guess λ0

Perform rank revealing decomposition

Minimize lower right block: ‖U22(λ)‖F → 0.

Repeat until convergence

Charles Ouyang Bernstein type inequalities of the Voronoi cell of the hexagonal lattice



Introduction Application Method Theory Comparison Cubic Convergence

Determining Nonlinear Eigenvalues Through Minimization

Goal

Improve λ0 as an approximation to λ∗.

Plan

Give initial guess λ0

Perform rank revealing decomposition

Minimize lower right block: ‖U22(λ)‖F → 0.

Repeat until convergence

Charles Ouyang Bernstein type inequalities of the Voronoi cell of the hexagonal lattice



Introduction Application Method Theory Comparison Cubic Convergence

Minimization Technique

||U22(λ)||2F ≈ ||U22(λ0) + U ′22(λ0)(λ− λ0)||2F

Choose next iterate λ1 so that

||U2,2(λ0)+U ′2,2(λ0)(λ1−λ0)||2F = min
λ
||U2,2(λ0)+U ′2,2(λ0)(λ−λ0)||2F .
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Minimization using Newton’s method

Letting f (λ) = ||U2,2(λ0) + U ′2,2(λ0)(λ− λ0)||2F ,

Iterate:

λi+1 = λi −
f ′(λi )

f ′′(λi )
,

where

f ′(λi ) = 2(col U ′2,2(λi ))H · col U2,2(λi ),

f ′′(λi ) = 2||U ′2,2(λi )||2F .
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Algorithm for Computation of Nonlinear Eigenvalues

Step 1: Given an initial approximation λ0 to λ∗
Step 2: Compute

A(λi ) and A′(λi ), i = 0, 1, · · ·

Step 3: Compute the LU decomposition with complete pivoting of
A(λi ):

P1A(λi )P2 = L(λi )U(λi )
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Algorithm to compute NE: Newton’s method + RRLU

Step 4: Compute

U ′2,2(λi ) = (L−1i P1A′(λi )P2)2,2 − (L−1i P1A′(λi )P2)2,1(U
(i)−1

1,1 U
(i)
1,2)

Step 5: Compute

λi+1 = λi −
(col U ′2,2(λi ))H · col U2,2(λi )

||U ′2,2(λi )||2F
.

Step 6: If tolerance is satisfied, stop. Otherwise, repeat steps 2-6.

Convergence is quadratic
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Numerical Rank Determination

Property

Let Pk
1 A(λ(k))Pk

2 = L(λ(k))U(λ(k)) Then, the diagonals of U
satisfy

min
1≤ i ≤n−m

| uii (λ
(k)) | � max

n−m+1≤ i ,j ≤n
| uij(λ

(k)) |
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Numerical Rank Determination

Property

Let Pk
1 A(λ(k))Pk

2 = L(λ(k))U(λ(k)) Then, the diagonals of U
satisfy

min
1≤ i ≤n−m

| uii (λ
(k)) | � max

n−m+1≤ i ,j ≤n
| uij(λ

(k)) |

Choose threshold ε > 0 so that

max
n−m+1≤ i ,j ≤n

|uij(λ
(k))| ≤ ε max

1≤ i≤ n−m
|uii (λ

(k))| ≤ min
1≤ i ≤n−m

|uii (λ
(k))|
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100 x 100 Time Comparison

Table: Time [ms] Comparison of Algorithm Performance

Nonlinear LU QR Ratio of Averages
Matrix Average Average (QR / LU)

Q 391.154 1696.066 4.336

Q, E 362.494 1630.445 4.498

Q, S 393.234 1634.839 4.157

Q, E, S 389.039 1650.813 4.243

A(λ) = A0 + A1λ+ A2λ
2 + A3 sin(λ) + A4 cos(λ) + A5eλ.

Ai are random constant matrices.
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Newton Steffensen Method

Cubic Convergence Iterative Formula

Applying Steffensen’s acceleration method to Newton’s root
finding method generates an iterative formula with cubic
convergence. Let f (x∗) = 0 and let x0 be sufficiently close to x∗,
then the successive iterative approximations are determined by

xn+1 = xn −
f 2(xn)

f ′(xn)(f (xn)− f (x∗n ))

where

x∗n = xn −
f (xn)

f ′(xn)
.
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Newton Steffensen Method

xn+1 = xn −
f ′2(xn)

f ′′(xn)(f ′(xn)− f ′(x∗n ))

where

x∗n = xn −
f ′(xn)

f ′′(xn)
.

f ′(λ) = (col U ′2,2(λi ))H · col U2,2(λi )

f ′′(λ) = ||U ′2,2(λi )||2F
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Table: Cubic Algorithm Error Convergence

Iteration Error

1 0.3212

2 0.1340

3 1.7791 ∗ 10−4

4 5.1172 ∗ 10−13
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