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Background

Modeling the Web

Definition

Given a matrix Anxn, the graph Γ(A) is a directed graph with n
nodes P1, P2,...,Pn such that

Pi has a link to Pj ⇐⇒ aij 6= 0

Conversely, given a directed graph Γ(A), the associated matrix A
will be called the link matrix or adjacency matrix.

Definition

A directed graph is called strongly connected if there exists a
path from each node to every other node.

A hybrid reordered Arnoldi method to accelerate PageRank computations



Introduction Algorithms Arnoldi’s Process Arnoldi-based Algorithms Improvements Conclusion References

Background

Modeling the Web

Definition

Given a matrix Anxn, the graph Γ(A) is a directed graph with n
nodes P1, P2,...,Pn such that

Pi has a link to Pj ⇐⇒ aij 6= 0

Conversely, given a directed graph Γ(A), the associated matrix A
will be called the link matrix or adjacency matrix.

Definition

A directed graph is called strongly connected if there exists a
path from each node to every other node.

A hybrid reordered Arnoldi method to accelerate PageRank computations



Introduction Algorithms Arnoldi’s Process Arnoldi-based Algorithms Improvements Conclusion References

Background

Strongly Connected Vs. Weakly Connected
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Figure: Strongly connected (left) and weakly connected (right)
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Background

Modeling the Web

Theorem

A matrix Anxn is irreducible ⇐⇒ Γ(A) is strongly connected.
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Background

Modeling the Web

Definition

A matrix Anxn is called (row) stochastic if it is nonnegative and
the sum of the entries in each row is 1.

Definition

A matrix Anxn is called reducible if there is a permutation matrix
Pnxn and an integer 1 ≤ r ≤ n-1 such that

PTAP =

[
C D
0 E

]
where 0 is an (n-r)×r block matrix. If a matrix A is not reducible,
then it is called irreducible.
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Background

Modeling the Web

Definition

A nonnegative matrix Anxn is called primitive if it is irreducible
and has only one eigenvalue of maximum magnitude.

I In modeling the web, we use a stochastic, primitive matrix to
ensure that there is a unique dominant eigenvalue λ1 of
maximum magnitude 1, which is associated with the
dominant eigenvector.

This dominant eigenvector is called the PageRank vector.
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Background

Making the web matrix stochastic

I One problem is that our web matrix H is not stochastic
because of dangling nodes.

Definition

Dangling nodes are nodes which have no outlinks, like a PDF or
JPEG file.

I A simple way to address this problem is by replacing the zero
row, which occurs because the page has no outlinks, with a
probabilistic vector.
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Background

Making the web matrix stochastic

From this, we get the definition

B = H + auT .

where ai =


1 if page i is a dangling node

0 otherwise

and uT is any probabilistic vector.
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Background

Making the web matrix irreducible

I A second problem is that the matrix B we just created may be
a reducible matrix.

I To remedy this, we force every page to be reachable from
every other page.

I In reality, this is true, because at any time a user could jump
from one page to another by using the URL of the page.
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Background

Making the web matrix irreducible

I The chosen method to fix this problem is by adding a
perturbation matrix to B, letting

G = αB + (1− α)E

where 0 < α < 1 and

E = eeT/n or E = euT

where e is a vector of ones.

I We call this stochastic, irreducible matrix G the ”Google
matrix” and uT the personalization vector.
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Overview

Past Methods

I The Power Method

I The Linear Approach

I IAD

I Combining reordering with Power, Linear, IAD

I Refined Arnoldi Algorithm

I Arnoldi Extrapolation Algorithm

I Adaptive Arnoldi Algorithm
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Power Method

The Power Method

I The power method was the original approach used by
Google’s founders Sergey Brin and Larry Page in [1].

Ranking Pages

Given a number of web pages n the rank rk(Pj) of a given page Pj

at step k can be determined iteratively by the formula

rk (Pj) =
∑

Pi∈BPj

rk−1(Pi )

|Pi |
,

where the number of outlinks of a page P is given by |P|, BPj
is

the set of all pages P with links to Pj and i , j = 1, 2, . . . , n, i 6= j .

A hybrid reordered Arnoldi method to accelerate PageRank computations



Introduction Algorithms Arnoldi’s Process Arnoldi-based Algorithms Improvements Conclusion References

Power Method

The Power Method

I The power method was the original approach used by
Google’s founders Sergey Brin and Larry Page in [1].

Ranking Pages

Given a number of web pages n the rank rk(Pj) of a given page Pj

at step k can be determined iteratively by the formula

rk (Pj) =
∑

Pi∈BPj

rk−1(Pi )

|Pi |
,

where the number of outlinks of a page P is given by |P|, BPj
is

the set of all pages P with links to Pj and i , j = 1, 2, . . . , n, i 6= j .

A hybrid reordered Arnoldi method to accelerate PageRank computations



Introduction Algorithms Arnoldi’s Process Arnoldi-based Algorithms Improvements Conclusion References

Power Method

The Power Method

I If vk = [rk (P1) rk (P2) . . . rk (Pn)]T , then the previous
equation can be written as

Power Method

vT
k = vT

k−1H where Hij =


1
|Pi | if Pj has a link from Pi

0 otherwise
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Power Method

The Power Method

I The equation vT
k = vT

k−1H, where k = 0, 1, 2, ... and H is the
web matrix, is simply the power method being used to
compute the left dominant eigenvector of H.

I The eigenvector,
v = lim

k→∞
vk ,

is called the PageRank vector.
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Power Method

Implementation of the Power Method

I The power method is implemented by

vT
k+1 = vT

k G = αvT
k H + [αvT

k a + (1− α)]eT/n

where G = αB + (1− α)E and B = H + auT

I Instead of implementing vT
k G we choose to use the equivalent

equation αvT
k H + [αvT

k a + (1− α)]eT/n which is much
cheaper to implement than the original equation since it
restores sparsity to the matrix.

A hybrid reordered Arnoldi method to accelerate PageRank computations
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Power Method

Convergence of the Power Method

I To ensure convergence of power method, we need to require
that the eigenvalues of H satisfy

|λ1 | > |λ2 | ≥ · · · ≥ |λn |.

I We call λ1 the dominant eigenvalue and λ2 (also denoted by
α) the subdominant eigenvalue.

I Note the explicit inequality between λ1 and λ2. This is
sufficient because, while convergence will usually be achieved
even if there is more than one dominant eigenvalue, it may be
extremely slow, since the rate of convergence is λ2

λ1
.
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Power Method

Convergence of the Power Method

I The ideal case for this problem is when λ2 is far from λ1.
However, this would mean that G is not a realistic model of
the web. The closer λ2 is to 1, the more realistic the model is.
For some methods, such as the power method, large values of
λ2 slow the convergence time considerably. For this reason,
λ2 is usually chosen to be 0.85.

I The main drawback of the power method is the slow
convergence it exhibits when λ2 is close to λ1 (when λ2 → 1).
Because of this, other methods have been considered.
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Reordering

Reordering

I Changing the order of the rows and columns of a matrix will not
change the structure of the links of the matrix, just the numbering
of the nodes.

I This led to the idea that reordering the matrix by decreasing row
and column degree could drastically simplify computations.

I Reordering has been shown to increase the distance between λ1 and
λ2. It has not yet been proven why.

I Reordering has been used in conjunction with other methods to
improve their convergence time, such as the power method, the
linear approach, and IAD. It has been shown to significantly improve
the rate of convergence in the power method in [10].
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Reordering

Reordering by Dangling Nodes

After reordering our web matrix H by dangling nodes, it can be
rewritten as

H =

[
H11 H12

0 0

]
where H11 is a square matrix that represents the links from
nondangling nodes to nondangling nodes and H12 is a square
matrix that represents the links from nondangling nodes to
dangling nodes.
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Reordering

Reordering Example
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Figure: Matrix without reordering (left) and with reordering (right)
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Background

Krylov subspaces

Definition

Let A be a matrix of order n and let u 6= 0 be an n vector. Then
the sequence

u,Au,A2u,A3u, ...

is a Krylov sequence based on A and u.

Definition

We call the matrix

Kk(A, u) = [u Au A2u ... Ak−1u ]

the kth Krylov matrix.
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Background

Krylov subspaces

Definition

The space
Kk(A, u) = R[Kk(A, u)]

is called the kth Krylov subspace.

I More simply, the Krylov subspace is the column space of the
Krylov matrix.
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Background

Krylov subspaces

I Krylov subspaces offer swift convergence of an approximation
to the dominant eigenvector within the subspace.

I One advantage of Krylov subspaces is that you keep all the
information (the Aku’s) that you have already generated. In
the power method, this valuable information from the
previously generated vectors is thrown away.
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Background

Arnoldi’s Process

I Arnoldi’s process is used to generate an orthonormal basis of
Kk(A, u).

I Arnoldi’s process can be written in matrix form by

AQk = QkHk + hk+1,kqk+1ek

or

AQk = Qk+1H̃k

where Qm = (q1, q2, ..., qm) and is orthogonal, m = k, k + 1,
ek is the kth coordinate vector of dimension k , and H̃k is the
(k + 1) × k upper Hessenberg matrix identical to Hk except
for an additional row of zeroes, where the only nonzero entry
is hk+1,k .
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Background

Arnoldi’s Process

I The equation AQk = QkHk + hk+1,kqk+1ek gives us the
relationship

Hm = QT
mAQm

I This, together with AQk = Qk+1H̃k gives us an approximate
similarity transformation, which is what is used in the iterative
Arnoldi algorithm since the approximate eigenvalues are much
cheaper to calculate than the exact eigenvalues.
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Restarted Arnoldi’s

Ritz Values and Ritz Vectors

Definition

Let x
(k)
i , y

(k)
i , i = 1, 2, ...,m denote the eigenpairs of Hk and λi ,

φi denote the eigenpairs of A. Then x
(k)
i are the Ritz values of A

in Kk(A, u). These Ritz values approximate λi and the vectors

φ
(k)
i = Qky

(k)
i

which approximate φi , are called the Ritz vectors of A in
Kk(A, u).

I The Ritz values of H will converge to the eigenvalues of A as
k →∞; however, this does not necessarily imply that the Ritz
vectors of H are converging to the eigenvectors of A.
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Restarted Arnoldi’s
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Refined Arnoldi’s

Refined Ritz Values and Refined Ritz Vectors

I A newer idea is to use refined Ritz vectors, which have been
shown to converge to the eigenvectors of A if the Ritz values
are converging to the eigenvalues of A.

I It has also been shown that algorithms using refined Ritz
vectors converge more rapidly than those with normal Ritz
vectors in [7].

I By using refined Ritz vectors, we ensure that, not only are the
eigenvalues of H converging to the eigenvalues of A, the
eigenvectors of H are also converging to the eigenvectors of A.
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Refined Arnoldi’s

Singular Value Decomposition

Definition

For any given matrix Amxn there exists a decomposition

A = UΣV T

such that U is an m × m orthogonal matrix, Σ is an m × n
diagonal matrix, and V is an n × n orthogonal matrix.

The diagonal values of Σ are called the singular values of A.

The column vectors of U are the left singular vectors of A.

The column vectors of V are the right singular vectors of A.

A hybrid reordered Arnoldi method to accelerate PageRank computations



Introduction Algorithms Arnoldi’s Process Arnoldi-based Algorithms Improvements Conclusion References

Refined Arnoldi’s

Solving for Refined Ritz Vectors

I Refined Ritz vectors can be computed by solving the singular
value decomposition

H̃ − Ĩ = UΣV T

where the eigenvalue is not needed in H̃ - Ĩ since the
eigenvalue for which we are computing the vector in the
PageRank problem is equal to 1, which was noted by [6].

I In general, singular value decompositions are very
computationally expensive to implement. However, the matrix
H̃ is very small, usually seven or eight rows and columns or
less.
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Refined Arnoldi’s

Theorem

Theorem

Let the z
(k)
i be the right singular vectors of H̃k - x

(k)
i Ĩ associated

with σmin(H̃k - x
(k)
i Ĩ ). Then the following relations hold:

u
(k)
i = Qkz

(k)
i

‖(A− x
(k)
i I )u

(k)
i ‖ = σmin(H̃k − x

(k)
i Ĩ )

=
√
‖(H̃k − x

(k)
i Ĩ )z

(k)
i ‖2 + h2

k+1,k |ekz
(k)
i |
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Refined Arnoldi’s

Theorem

The vector u(k) is in Kk(A, u), regardless of the value of z
(k)
i , since

Qk is an orthonormal basis for Kk(A, u).
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Refined Arnoldi’s

Pseudocode

refinedArnoldi(A, q, k)

1: Repeat
2: [Qk+1,Hk+1,k ] = Arnoldi(A, q, k)
3: Compute Hk,kvM = θMvM

4: Compute Hk+1,k - θM Ĩ = UΣV T

5: Set v = V∗k
6: Set q = Qkv
7: Until σmin(Hk+1,k − θM Ĩ ) < ε

where Ĩ is the identity matrix augmented with a row of zeroes, V∗k
is the kth column of V , Hk,k is obtained by excluding the last row
from Hk+1,k , and θM is the dominant eigenvalue of Hk,k and vM is
the associated dominant eigenvector.
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Refined Arnoldi’s

Pseudocode

However, from [6], since we know θM = 1, we can simplify our
algorithm:

refinedArnoldi(A, q, k)

1: Repeat
2: [Qk+1,Hk+1,k ] = Arnoldi(A, q, k)
3: Compute Hk+1,k - Ĩ = UΣV T

4: Set v = V∗k
5: Set q = Qkv
6: Until σmin(Hk+1,k − Ĩ ) < ε
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Arnoldi Extrapolation

Arnoldi Extrapolation

I In [11], a new algorithm is proposed, using an extrapolation
procedure to improve the starting vector q, making the
algorithm converge faster.

I This extrapolation procedure is also used in the iterative
Arnoldi algorithm to improve q on each iteration.

I This method has been shown to converge faster than the
power method and the refined Arnoldi method where α→ 1.
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Arnoldi Extrapolation

Initial Assumptions

By making the assumption that the approximation generated by the
Arnoldi-type algorithm, denoted x (k−1), can be expressed as a linear
combination of the first three eigenvectors we get the following formulas:

x (k−1) = x1 + α2λ2x2 + α3λ3x3

x (k) = Ax (k−1) = x1 + α2λ
2
2x2 + α3λ

2
3x3

x1 =
x (k+1) − (λ2 + λ3)x (k) + λ2λ3x

(k−1)

(1− λ2)(1− λ3)

x̂1 =
x (k+1) − (λ2 + λ3)x (k) + λ2λ3x

(k−1)∥∥x (k+1) − (λ2 + λ3)x (k) + λ2λ3x (k−1)
∥∥

1
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Arnoldi Extrapolation

Approximations

I The final formula provides a good approximation to the
PageRank vector.

I Instead of using the actual values of λ2 and λ3, we will use
the approximations generated by the Arnoldi-type method.

I This also means that the smallest m that we can use in the
Arnoldi process is 3, since we need the second and third
approximate eigenvalues for the equation.
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Arnoldi Extrapolation

Cases to Consider

There are two cases that we must consider:

Case 1: λ̃2 and λ̃3 are real

In this case, we will use

x̃1 =
x (k+1) − (λ̃2 + λ̃3)x (k) + λ̃2λ̃3x

(k−1)∥∥∥x (k+1) − (λ̃2 + λ̃3)x (k) + λ̃2λ̃3x (k−1)
∥∥∥

1

as our approximation.
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Arnoldi Extrapolation

Cases to Consider

Case 2: λ̃2 and λ̃3 are conjugate

In this case, we will use

x̃1 =
x (k+1) − 2Re(λ̃2)x (k) + |λ̃2|2x (k−1)∥∥∥x (k+1) − 2Re(λ̃2)x (k) + |λ̃2|2x (k−1)

∥∥∥
1

as our approximation, where Re(λ̃2) denotes the real part of λ̃2.
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Adaptively Accelerated Arnoldi’s

Adaptively Accelerated Arnoldi’s

In [12], a new adaptively accelerated Arnoldi method is proposed.
This method uses the weighted inner product to speed up
convergence. It is proposed to change the weights based on the
current residual.
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Adaptively Accelerated Arnoldi’s

Definition

Let Gnxn be a symmetric positive definite matrix and x and y be
two vectors. Then a G-inner product is defined as

(x , y)G = xTGy

This inner product is well defined if and only if the matrix G is
symmetric positive definite.

Definition

Let G and x be defined as before. Then the norm associated with
the G -inner product is defined by

‖x‖G =
√

(x , x)G =
√

xTGx

which is called the G-norm.
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Adaptively Accelerated Arnoldi’s

Adaptively Accelerated Algorithm

I In order to strengthen the weights of the components which
converge slowly, we can define ωi by

ωi =
|r̃i |
‖r̃‖1

where r̃ is the residual computed by the last accelerated Arnoldi
process and

∑n
i=1 ωi = 1.

I The idea is to give a larger weight to the ri that are converging
slowly, in order to accelerate the convergence of the algorithm.

I Thus, G is given by

G = diag

{
|r̃i |
‖r̃‖1

}
This adaptive changing of the residual is what leads the the faster
convergence of the adaptively accelerated Arnoldi algorithm.
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Subdominant Eigenvalue

Subdominant Eigenvalue

I In [3], high stepping orderings are applied, after the matrix
satisfies ”Property R”, to reduce the magnitude of λ2. We
found that the ordering we are using is more efficient than this
reordering.

I In [8], some upper bounds on the magnitude of λ2 are given
for irreducible, stochastic matrices; however, this only works
after the matrix has been partitioned with IAD, which doesn’t
apply to our matrices.

I In [5], they show that if the rows of a matrix are
n-dimensional, random variables with |cov(aij , bik)| ≤ c

n3 , then
|λ2| → 0 as n→ inf. When we tried this, we found that the
covariance was always 0, so this method would not work for
us.
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Subdominant Eigenvalue

Subdominant Eigenvalue

I In [4], they reorder the matrix into NCD form with partitioned
diagonal blocks formed by using the strongly connected
components. Then, using ILU as a preconditioner, different
Krylov subspace methods are used. We chose to use our
reordering instead of this, since we believe it is more efficient.

I In [2], bounds are given on the subdominant eigenvalue of
stochastic matrices with nonnegative eigenvalues. This does
not apply to us, since our eigenvalues can be negative or even
complex.
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Reordering Hybrid

Reordered Refined Arnoldi

I Since reordering significantly sped up the convergence time of
the power method in [10], we decided to apply it to the
Refined Arnoldi algorithm to see if the convergence time of it
could be sped up as well.

I The reordering we used was by decreasing row and column
degree. In our tests, this was shown to move λ2 farthest away
from λ1, thus maximizing the convergence speed.

I The results of this reordering vs. not reordering are shown in
the following tables.
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Reordering Hybrid

California Stanford CNR Stanford-Berkley
Without Reordering .04092 5.26132 6.97566 9.40766

With Reordering .02372 1.4956 2.01628 3.95372
Speedup 42.0% 71.6% 71.1% 56.0%

Table: Comparison of CPU times with α = .85 and m = 5

California Stanford CNR Stanford-Berkley
Without Reordering .04486 8.07578 10.43478 13.9722

With Reordering .02678 1.48892 1.98436 3.93864
Speedup 40.3% 81.6% 81.0% 71.8%

Table: Comparison of CPU times with α = .90 and m = 5
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Reordering Hybrid

California Stanford CNR Stanford-Berkley
Without Reordering .07072 15.87858 21.43492 26.11446

With Reordering .03278 1.53726 1.99698 4.45082
Speedup 53.6% 90.3% 90.7% 83.0%

Table: Comparison of CPU times with α = .95 and m = 5

California Stanford CNR Stanford-Berkley
Without Reordering .17402 62.59826 90.77086 109.47492

With Reordering .03468 1.74194 2.02384 4.56164
Speedup 80.1% 97.2% 97.8% 95.8%

Table: Comparison of CPU times with α = .99 and m = 5
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New Initial Guess

New Initial Guess

I We tried to improve the initial guess of the Arnoldi-based
algorithms by using the column sum of the web matrix H.

I The only matrix that this helped the majority of the time was
the Stanford web matrix.

I The results of this are shown in the following tables.
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New Initial Guess

α = 0.85 α = 0.90 α = 0.95 α = 0.99
Without New Initial Guess 5.26132 8.07578 15.87858 62.59826

With New Initial Guess 5.4839 7.70132 11.85016 54.8347
Speedup -4.2% 4.6% 25.4% 12.4%

Table: Comparison of CPU times of Refined Arnoldi algorithm on
Stanford matrix with m = 5

α = 0.85 α = 0.90 α = 0.95 α = 0.99
Without New Initial Guess 6.69214 6.19414 8.8023 29.38416

With New Initial Guess 2.97144 4.39606 6.5456 103.97394
Speedup 55.6% 29.0% 25.6% -253.8%

Table: Comparison of CPU times of Extrapolated Arnoldi algorithm on
Stanford matrix with m = 3
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Conclusions

I We observed that the reordering algorithm we use separates λ2

from λ1 the most, thus giving us the fastest convergence time.

I We also observed that combining reordering with the refined
Arnoldi algorithm significantly improves the convergence time
of the algorithm.

I After studying the generalized Arnoldi, we observed that there
is no significant improvement over the refined Arnoldi
algorithm presented in [6].

I Changing the initial guess vector to the sum of the columns of
the web matrix did not significantly improve the convergence
time, except on the Stanford matrix. In most other cases, it
actually converged more slowly than when the initial guess
was a random vector.
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Open Questions

I Why does λ2 separate from λ1 when a matrix is reordered?

I Is it possible to associate our reordering with some explicit
permutation matrices and/or similarity transformations?

I Is it possible to construct an ordered Schur factorization
QTAQ = T , where the entries in the block upper triangular
matrix T are all nonnegative? If so, we can apply some results
on the spectral radius of the nonnegative matrix B (whose
dominant eigenvalue is λ2).

I Is there any relationship between our reordering and
preconditioning via ILU?
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Arnoldi’s Method

Arnoldi(A, q, k)

1: q1 = q/ ‖q‖2
2: for j = 1 to k
3: z = Aqj

4: for i = 1 to j
5: hi ,j = qT

i z
6: z = z − hi ,jqi

7: end for
8: hi ,j = ‖z‖2
9: if hj+1,j = 0, quit
10: qj+1 = z/hj+1,j

11: end for
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Restarted Arnoldi’s Method

restartedArnoldi(A, q, k)

1: Repeat
2: [Qk+1,Hk+1,k ] = Arnoldi(A, q, k)
3: Compute Hk,kvM = θMvM

4: Set q = QkvM

5: Until ‖Aq − q‖2 < ε

where Hk,k is obtained by excluding the last row from Hk+1,k , θM
is the dominant eigenvalue, vM is the associated dominant
eigenvector, and ε is a predetermined tolerance.

A hybrid reordered Arnoldi method to accelerate PageRank computations



Introduction Algorithms Arnoldi’s Process Arnoldi-based Algorithms Improvements Conclusion References

Extrapolation Method

extrap(A, x (k−1), λ̃2, λ̃3, tol)

1: x (k) = Ax (k−1)

2: r =
‖x(k)−x(k−1)‖

1

‖x(k−1)‖
1

3: if tol < r < 1e - 2
4: if λ̃2 and λ̃3 are real
5: x (k+1) = Ax (k)

6: x (k) = x (k+1) − (λ̃2 + λ̃3)x (k) + λ̃2λ̃3x
(k−1)

7: end if
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Extrapolation Method, cont.

extrap(A, x (k−1), λ̃2, λ̃3, k, tol)

8: if λ̃2 and λ̃2 are conjugate
9: x (k+1) = Ax (k)

10: x (k) = x (k+1) − 2Re(λ̃2)x (k) + |λ̃2|2x (k−1)

11: end if
12: n =

∥∥x (k)
∥∥

1

13: x (k) = x(k)

n

14: k = k + 1
15: end if
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Initial Conditions for Algorithm

Before we run the main code of the algorithm, we must set some
initial conditions:

m = 3
k = 0
r = 1
r0 = r
restart = 0
α = 0.85
β = α - 0.2
maxit = 6
tolnorm = 0.1
n = 1
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Extrapolation Algorithm

extrapArn(A, v, m, β, maxit, restart, tolnorm)

1: while restart < maxit and r > tol
2: x = Av

3: r =
‖x−v‖1
‖v‖1

4: x = x
‖x‖1

5: if r
r0
> β

6: restart = restart + 1
7: end if
8: v = x
9: k = k + 1
10: r0 = r
11: end while
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Extrapolation Algorithm, cont.

extrapArn(A, v, m, β, maxit, restart, tolnorm)

12: while r > tol
13: [Qm+1, H̃m] = Arnoldi(A, x, m)
14: Compute eigenpairs of H and select λ̃2 and λ̃3

15: Compute SVD: H̃m - Ĩ = UΣV T

16: v = QmV (:,m)
17: x = Qm+1(H̃V (:,m))

18: r =
‖x−v‖1
‖v‖1

19: x = x
‖x‖1

20: restart = 0
21: r0 = r
22: n = 1;
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Extrapolation Algorithm, cont.

extrapArn(A, v, m, β, maxit, restart, tolnorm)

23: while r > tol and n ≥ tolnorm
24: [x, r, k, n] = extrap(A, x, λ2, λ3, k, tol)

25: if r
r0
> β

26: restart = restart + 1
27: end if
28: r0 = r
29: end while
30: end while
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The Generalized Arnoldi Method

GArnoldi(A, G, q0, m)

1: q̃1 = q0

‖q0‖G
2: for j = 1, 2,..., m
3: w = Aq̃j

4: for k = 1, 2,..., j
5: h̃k,j = (w , q̃k)G

6: w = w - h̃k,j q̃k

7: end for
8: h̃j+1,j = ‖w‖G
9: if hj+1,j = 0
10: stop and exit
10: else
11: qj+1 = w

h̃j+1,j

12: end if
13: end for
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Adaptively Accelerated Algorithm

adaptiveArnoldi(A, G, q, m, tol

1: while true
2: [Qm+1, Hm+1,m] = GArnoldi(A, G, q, m)
3: H̃m+1,m - Ĩ = UΣV T

4: q = Qmvm

5: r = σmQm+1um

6: if ‖r‖1 < tol
7: stop and exit
8: end if

9: G = diag
{
|ri |
‖r‖1

}
10: end while
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