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Definition

Given a real-valued function f , the limit of f exists at a point
c ∈ R if for each given ε > 0, there exists δ > 0 such that for any
x ∈ R if 0 < |c − x | < δ, then |f (c)− L| < ε.
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Definition

Given a real-valued function f , f is continuous at a point c ∈ R if
for each given ε > 0, there exists δ > 0 such that for any x ∈ R if
|c − x | < δ, then |f (c)− f (x)| < ε.
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Definition

Let B be a subset of R. B is said to be dense in R if for any point
x ∈ R, x is either in B or a limit point of B. Equivalently, given
any ε > 0, and any x ∈ R, then ∃p ∈ B such that p ∈ Nε(x).

Notation

Given f : [a, b]→ R, let FC denote the set of points where f is
continuous. Let F+ denote the set of points where the right-sided
limit of f exists. Similarly, let F− denote the set of points where
the left-sided limit of f exists. Then, also let FL designate the set
of points where a one-sided limit exists, that is FL = F+ ∪ F−.
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Notation

Let D be the set of points of discontinuity of a real function f .
Then each point in D belongs to one of the following 3 sets:

D1, the set of points c ∈ [a, b] such that f has either a
removable or jump discontinuity at c.

D2, the set of points c ∈ [a, b] such that f has only either a
right-sided limit or a left-sided limit at c.

D3, the set of points c ∈ [a, b] such that f has neither a
right-sided limit or a left-sided limit at c.
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Definition

A set A is countable if there exists a one-to-one correspondence
from A to N.
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Recap: Results
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Proposition

Let f be a function defined on [a, b]. Then the sets D1 and D2 are
at most countable.
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Theorem

Let f be a function defined on [a, b]. Assume that the set FL is
dense in [a, b]. Then the set FC is nonempty, dense in [a, b], and
uncountable.
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Theorem

Let f : [a, b]→ R, with FL dense in R. Then f is unique on FC .
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Corollary

If f : [a, b]→ R and m(D3) = 0, and given FL dense in R, then f
is unique except at a set of measure zero.
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Proposition

Given a function f : [a, b]→ R, there is no countable dense set G
where G := {c : lim

x→c
f (x) = L with L ∈ R}.
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Definition

An Fσ set is a countable union of closed sets.
A Gδ set is a countable intersection of open sets.
Examples:
Q is Fσ.
R\Q is Gδ.

The set of continuity points of a function f : R→ R is a Gδ
set. Conversely, every Gδ subset of R is the set of continuity
points of a function f : R→ R.
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Theorem

(FL)c is an Fσ set.

Let ω(f ; J) = sup
x∈J

f (x)− inf
x∈J

f (x)

ω(f ; a) = inf
a∈J

(ω(f ; J))

Er = {a : ω(f ; a) ≥ 1
r }
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Theorem

There is no function that is continuous only on Q.
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Is there a Gδ set of measure zero, containing Q, that we can
construct a continuous function on?
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Definition

A real number x is a Liouville number if for any given n ∈ N, there
exist infinitely many relatively prime integers p and q with q > 1
such that 0 < |x − p

q | <
1
qn . We will denote the set of Liouville

numbers with L.
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Is there a Gδ set of measure zero, containing Q, that we can
construct a continuous function on?

Let f : R→ R

f (x) =

{
0, if x ∈ L ∪Q
1
Nx
, otherwise

Where Nx is defined as the first n where x fails to meet the
definition of a Liouville number. In other words, the first n
such that there do not exist p and q such that
0 < |x − p

q | <
1
qn .
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Definition

The irrationality measure for a real number x is a numeric
representation of how well x can be approximated by the rationals.
Let µ be the least upper bound such that 0 < |x − p

q | <
1
qµ where

p, q ∈ Z. We call µ the irrationality measure of x .

Notation

Let µ(x) stand for irrationality measure of x.
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For example:
µ(x) =∞ if x ∈ L,
µ(x) = 1 if x ∈ Q,
µ(x) = 2 if x is an algebraic number of degree > 1,
µ(x) ≥ 2 if x is transcendental.

Definition

If r is a root of a nonzero polynomial equation

anxn + an−1xn−1 + · · ·+ a1x + a0 = 0

where ai ∈ Z and r satisfies no similar equation of degree < n then
r is said to be an algebraic number of degree n. A number that is
not algebraic is said to be transcendental.
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Notation

For fixed n, Sn,k =
{

x : |x − rk | < 1
qnk

}
where rk is the

rational pk
qk

. C =
∞⋂

N=1

∞⋃
k=N

Sn,k .

BN =
∞⋃

k=N

Sn,k , B1 ⊃ B2 ⊃ · · · ⊃ BN ⊃ BN+1 ⊃ · · · .

B =
∞⋃
k=1

Sn,k . We will be working with Bc , and BN\BN+1.

R = Bc ∪ (B1\B2) ∪ (B2\B3) ∪ · · · ∪ C .

Goodi Khalsa, Charles Ouyang, and Hannah Skavdal Construction of Continuous Functions on Special Sets



Notation

For fixed n, Sn,k =
{

x : |x − rk | < 1
qnk

}
where rk is the

rational pk
qk

. C =
∞⋂

N=1

∞⋃
k=N

Sn,k .

BN =
∞⋃

k=N

Sn,k , B1 ⊃ B2 ⊃ · · · ⊃ BN ⊃ BN+1 ⊃ · · · .

B =
∞⋃
k=1

Sn,k . We will be working with Bc , and BN\BN+1.

R = Bc ∪ (B1\B2) ∪ (B2\B3) ∪ · · · ∪ C .

Goodi Khalsa, Charles Ouyang, and Hannah Skavdal Construction of Continuous Functions on Special Sets



Notation

For fixed n, Sn,k =
{

x : |x − rk | < 1
qnk

}
where rk is the

rational pk
qk

. C =
∞⋂

N=1

∞⋃
k=N

Sn,k .

BN =
∞⋃

k=N

Sn,k , B1 ⊃ B2 ⊃ · · · ⊃ BN ⊃ BN+1 ⊃ · · · .

B =
∞⋃
k=1

Sn,k . We will be working with Bc , and BN\BN+1.

R = Bc ∪ (B1\B2) ∪ (B2\B3) ∪ · · · ∪ C .

Goodi Khalsa, Charles Ouyang, and Hannah Skavdal Construction of Continuous Functions on Special Sets



Notation

For fixed n, Sn,k =
{

x : |x − rk | < 1
qnk

}
where rk is the

rational pk
qk

. C =
∞⋂

N=1

∞⋃
k=N

Sn,k .

BN =
∞⋃

k=N

Sn,k , B1 ⊃ B2 ⊃ · · · ⊃ BN ⊃ BN+1 ⊃ · · · .

B =
∞⋃
k=1

Sn,k . We will be working with Bc , and BN\BN+1.

R = Bc ∪ (B1\B2) ∪ (B2\B3) ∪ · · · ∪ C .

Goodi Khalsa, Charles Ouyang, and Hannah Skavdal Construction of Continuous Functions on Special Sets



Proposition

For fixed n, define

hn(x) =

{
0, if x ∈ C ∪ Bc

1
N , if x ∈ BN\BN+1

hn(x) is continuous on C ∪ Bc .
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Proposition

For fixed n, hn(x) is discontinuous on BN\Bn+1 for all N.
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Consider the function h.

h(x) = lim
n→∞

hn(x)

gn(x) =

{
0, if x ∈ C ∪ Bc

1
qN
, if x ∈ BN\BN+1

then
lim
n→∞

gn(x) = R(x)
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Example

Dirichlet Function

f (x) =

{
1, x ∈ Q
0, x /∈ Q

Example

Riemann Function

R(x) =

{ 1
q , x ∈ Q, x = p

q in lowest terms

0, x /∈ Q
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Theorem

(Egorov’s Theorem) Let (X ,B, µ) be a measurable space and let E
be a measurable set with µ(E ) <∞. Let fn be a sequence of
measurable functions on E such that each fn is finite almost
everywhere in E and fn converges almost everywhere in E to a
finite limit. Then for every ε > 0, there exists a subset A of E with
µ(E − A) < ε such that fn converges uniformly on A.
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