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Overview

Last Model

= ax(l—x) — 2AmX iy

1+c(1—m)x (1)
. | b(1—m)x
y y 1+(c(17)m;/x

where H(x) = h
each of o, a, b, c,d, h, m and b are positive real parameters
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Continuation
New H(x)
0 x< T
) = { oD T cx< T @)
h x> T
3-D Model:
x = ax(l—x)-— %—FD;L(V—X)
v o= —dyv+ Da(x —v) (3)
. b(1—m)x:
v o= Y Ty
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Overview

Saddle Point

Given a dynamical system x = Bx, specifically at the solution
x(t) = eBtxg if the eigenvalues of B are real with opposite sign,
the point xp is a saddle point.

@ ®

Figure: Example of Saddle Point
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Overview

Node

If the eigenvalues are reals that have the same sign, the point is a

node.
If both are positive, then the point is unstable.

If negative, (asymptotically) stable.

1

®

Figure: Example of Node
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Overview

Focus

If the eigenvalues are complex conjugates, the point is a focus.
If the real parts are positive, the point is unstable.
If the real parts are negative, the point is (asymptotically) stable.

(@) (b)
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Figure: Example of Focus
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Center

If the eigenvalues are purely imaginary, then the equilibrium point
is of center type. This also indicates that the equilibrium is
non-hyperbolic.

Figure: Example of Center
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Overview

Non-Hyperbolic Points

This method only works for hyperbolic equilbrium points (from
Hartman-Grobman Theorem)

For non-hyperbolic equilibrium points and some global analysis we
need to perform bifurcation analysis.

Hartman-Grobman:

Indicates that near a hyperbolic equilibrium point xg, the nonlinear
system x = f(x) has the same qualitative structure as the linear
system x = Ax with A = Df(xp)
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Model 1: H(x) = h

Analyze the model by finding equilibrium points and their stability.
3 equilibrium points:

p (a — vV —4ah+ a? 0> p <a+ V—dah + o? 0>
0= ) ) 1= ) )
2c 2c

_h (b(m—1)+d(1+c—cm)a)
P, d p_d (b—cd)2(m—1)2
2T\ b=—cd)(1—m)’ a

2 boundary points on the x-axis (predator extinction)
1 interior boundary point (coexistence of the species)
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Trace-Determinant Analysis

The Jacobian J(x,y) is

at:xy(zrgr—l)2 . a(x . 1) . ay(rz—l) ~ax _ax(r:—l)
by(m-1) b(m=1) _ g

where z = cx(m—1) — 1.
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Conditions

if D < 0, point is a saddle
if D>0
T2 — 4D > 0, point is a node
T >0, unstable
T <0, stable
T2 -4D < 0, point is a focus
T >0, unstable
T <0, stable
T =0, point is of center-type (non-hyperbolic)
We want to look for conditions on our parameters that determine
which type of equilibrium point is present.
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Deriving Equilibrium Behavior
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Boundary Points

Boundary Points

The Jacobians evaluated at Py and P; are (respectively)

a—a®+a?(vVa? —bdah) -2 — 2
( ) ¢ c(ac(%fi‘m(mfl)o

2

ab| g+ Y528 )

0 — —d
ac[$+¥Y25—](m—1)—1
a—ao®—a?(vVa? —dah) —2— 2
( ( ) ¢ clac(g — Yol ok (1))
0 ablg -t lymo)

el g — Y (1) -1

o >4h

from the equilibrium points that we found.
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Deriving Equilibrium Behavior
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Boundary Points

Boundary: P,

Because the matrices for Py and Py are upper triangular, using the
eigenvalues to determine behavior can be done easily.

Given P; is
(= — (Va2 — 4ah) -2 — 2
clac(g - Yol teh(m_1y))
0 ab[%—(ivaz_mh)](m—l) 4
a \/a2—4ah
ac[jff](mfl)fl

The two eigenvalues are

M =a—ad—a’A

Vol—4a
N o b3 = m )
ac[g — Yol dah)(m 1) 1
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Deriving Equilibrium Behavior
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Boundary Points

Boundary P; cont

A can range from 0 to «, dependent on h. Thus, A; is necessarily
positive if @ < 1/4, but may be positive even if & = 1
Ao is complicated by the term b— cd if b < cd, Ao > 0

but if b > cd, then > > 0 if A < =cHhan

where © = /2 — A/2 and A = Va? — 4ah
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Deriving Equilibrium Behavior

Coexistence Point

Coexistence Point

At Py, the determinant (D) and trace (T) were evaluated to be:

adyn  abx(2x —1)n
22 z (4)

T——a(x—1)—d+ 2020 209
z

z z2

where z=cx(m—1)—land n=m—1

Note that z < n < 0.

Complex series of conditions to determine the behavior of this
point(explained in previous presentation).
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Deriving Equilibrium Behavior

0
Phase Portraits

Stable Focus

Since T<0, D<0and T2 —4D < 0, P, is a stable focus.

g

\%

003

Figurenz é‘ta;zbloé Focus Igh;sg I50rtrait
a=06a=6b=5bc=1d=2m=1h=.1
T =—.0575 D = .0204 T2 — 4D = —.0783
(0.4630,0.2049)
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Deriving Equilibrium Behavior

oce
Phase Portraits

Stable Node

Since T<0, D>0and T2—4D >0, P, is a stable node.

o
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Figure: Stable Node Phase Portrait

a=06a=6b=5bc=1d=3m=1h=.1
T =-.2825D=.0094 T2 —4D = .0421

(0.7092,0.0659)
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Bifurcations
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Sotomayor’s Theorem

Bifurcations

Drastic change in qualitative behavior of solutions for a small
change in one or more parameters

Can be (usually) detected using XPPAUT

Proven using Satomayor’s Theorem

01 005 0 005 01 015 02 025 03 035 04

Figure: Saddle-Node Bifurcation Diagram
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Sotomayor’s Theorem

Sotomayor's Theorem

Theorem

Suppose that f(xg, 110) = 0 and that the n x n matrix
A = Df(xo, o) has a simple eigenvalue A = 0 with eigenvector v
and that AT has an eigenvector w corresponding to the eigenvalue
A = 0. Furthermore, suppose that A has k eigenvalues with
negative real part and (n — k — 1) eigenvalue with positive real
part and that the following conditions are satisfied:

w' f,(x0, 110) # 0,  w' D*f(x0, 0)(v,v) # 0. (6)

Then the system experiences a saddle-node bifurcation at the
equilibrium point xg as the parameter i passes through the
bifurcation value 1 = ug.
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Bifurcations
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Sotomayor’s Theorem

Application of Sotomayor's Theorem

Theorem

Ifx=1% b+# ﬁ and o > 4h, then systems Model 1 and
Model 2 undergoes a saddle-node bifurcation at (%,0).

Proof.
1
w = [ axn :| f,u(X07M0) = [ -1 0 ] (7)
bxn—dz
Thus
w ' f,(xo, f10) # 0 (8)
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Bifurcations
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Sotomayor’s Theorem

D?*f(x)(v, v)

D?f(xo)(v,v) =

2 2
ThCo)y vy + ax(g;) > + BXE;;) vavy + Lhko) Qy(x") vavo
2
o 52)550) vivi + aX(ay) ViVvo + 8X(y) Vovy + 2( 0) Voo

an axn
—2a — 2 (bx(m—l)—dz)
b(l—m) axn
z2 bxn—dz

—an axn bn axn 2
=2 — | — -5 | — 0
¥t 2 (bxn—dz) z2 (bxn—dz) 7

w! D f(P)(v,v) =w'
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Bifurcations

[ Jele]e]

Hopf Bifurcation

Other Bifurcations

o6 s €00 0 0 00 o BN
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Bifurcations

0e00

Hopf Bifurcation

Hopf Bifurcation

Theorem

Under the conditions for the coexistence equilibrium P, to be of
center-type, there exists a Hopf bifurcation for the system.

Proof. For a system of the form:

x=ax+by+p(x,y) and y=cx+dy+q(x,y)

where

p(x,y) =2 ajx'y! =

(320X2 + aiixy +. 392y2) + (330X3 + 321X2y =+ algxy2 + ao3y3) and
q(x,y) =2 bjx'y! =

(b2ox? + br1xy + boay?) + (b3ox® + ba1x2y + bioxy? + bozy?)
with ad — bc >0 and a+d =0.
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Bifurcations

[e]e] o]

Hopf Bifurcation

First, we shift our equilibrium point of P, to the origin via the
change in coordinates X = x — x* and y = y — y* and then we
expand our expressions for X and ¥ in a power series to get

x = a®+x)(1 - (x+x)) - a(ﬁ':()ﬁx(ziy%) —h
b(1 X+x*)(y+y* (9)
—d(y+y*)+ (11?()1@;))((;35{;{ )
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Bifurcations

[eJele] ]

Hopf Bifurcation

Hopf Bifurcation at P,

a10 = o1 — 2x*) — AT gp) = M 5y =
—m)2y* _ 2
—a+ M7 ail = —73(1,”2"7), agz = 0,a2 = Llw m) az =
_ac2(lv—vin)3y*  bio = b(l;/T)y*’
bo1 —d+ b(1— m)x by = _ be(1- m)2 * by = b(1W—2m)7 boy =
2 _ 3,,%
0, bo3 = 0, b2 = 0, by = —b(t,ism)y b3o = %
where w =1+ ¢(1 — m)x*.
o= 244213 40

D = 310b01 — a()lblo =0.00143 >0
T = a9+ bppr =3.61973%x 10710~ 0

P> is also of center-type.
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Bifurcations

°
Coexistence

Influence of Refuge on Coexistence

da  d(b+cd)
dm ~ (b= cd)d—mp ~°
&
dys bh

o= 2d(1— m)3(b— cd)? [2ad — (1 — m)(b— acd] > 0

Conditions:
If b> acd, then%>0|f0<m<m where m* %

dys
dn <0ifm* <m<1.

or

Else, if b < acd, then m* < m < 1 and %<Oand if
0 < m< m*then 92 > 0.
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Piecewise Harvesting

Model 2: Threshold Harvesting

0 x< T
Hi(x) = % 1 <x<T,
h x> Ty
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Piecewise Harvesting
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Case 1: H(x)=0,x< T

Equilibrium Points

Q= (0,0), Q= (170)
B d b((b—cd)(1—m)—d
%= <(b— cd)(1—m)’ a ( (b—cd)?(1 — m)? >>

General Jacobian

1—2x— %{1)2 —a(x—1)— 73}’(";71) — ax —L('Z*l)
by(;fl) bx(nz"lfl) _d
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Piecewise Harvesting
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1 0
The Jacobian of Q; is J(0,0) = so @ is a saddle.
0 —d
The Jacobian of @5 is
a(l—m)
-1 T 1+c(1-m)

b(l—m
0 —d+ 55

Conditions:

(a)@z is a saddle if (1 — m)b > [1+ (1 — m)c]d.
(b)@> is a stable node if (1 — m)b < [1+ (1 — m)c]d.
(c)Q2 is never a focus or center type.
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Piecewise Harvesting
0®000000000

The Jacobian at Qs is

d[b—cd)(c(1—m)—1)—2cd] ad
b(b—cd)(1—m) b

J(x3,y3) =
(b—cd)(1—m)—d 0
a(l1—m)

[(b—cd)(1—m)—d]
b(1—m) '

T2 4D = pd oy [AmeoelbochU=ml] _ 4p(1 — m)[(b— cd)(1 — m) - d]]

Using Trace Determinant Analysis, D = d

D>0
given the conditions that b—cd and d < (b— cd)(1 —m)
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Piecewise Harvesting
00@00000000

_ d[b—cd)(c(l —m)—1)— 2cd]

T b(b— cd)(1 — m)

@ @3 can never be a saddle.

@ Qs is a node if d[—(b — cd) — c(b — cd)(1 — m)]? >
4b(b — cd)?(1 — m)[(b — cd)(1 — m) —d].
-If (b — cd)[c(1 — m) — 1] < 2cd, then the node is stable, and
unstable if the inequality is reverse.

o @3 is a focus if d[—(b — cd) — c(b— cd)(1 — m)]? <
4b(b — cd)?(1 — m)[(b — cd)(1 — m) — d].
- If (b — cd)[c(1 — m) — 1] < 2cd, then the focus is stable,
and unstable if the inequality is reverse.

@ s is of center-type if (b — cd)[c(1 — m) — 1] = 2cd.
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Piecewise Harvesting
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Case 2:H(x) =

Three Equilibrium Points

_(h=a(Ti=To) 0 (~h+a(Ti—T) 0
Rl— < 2OZ(T2— -,-1) 70 ’ R2_ 70

where o0 = \/4ahT1(T1 — T2) + (h+ a(—T1 + T2))? and
h>Oz(T1— Tg)—l—a.
Rs = (>3, 13)
d
(b—cd)(1—m)

X3 =

3=
p=alb(m=1)+d(1+c(1—m))][~d(b—cd)(Ti—To)|+h(m—1)(—d—(b—cd)(m—1) T1)(b—cd)?
[—d(b—cd)3(T1— T2)]a(m—1)2
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Piecewise Harvesting
00000000000

The general Jacobian is

1— 1—

Tzﬁ'rl 20X ay(z2 m) ax( = m)
by(1— bx(1—

/(1m) g — bxtizm)

Alexander Hare and Kei
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Piecewise Harvesting

00000@00000

The Jacobian at Ry is

o 2ahT1(m—1)
To,—T1 h+2chT1(17m)foz(T17T2)+cr
0 d— 2bhT1(m—1)
h+2chTi(1—-m)—a(Ti—T)+0o
and at R»
—2h—2a(T1—To)+o 2ahT(m—1)
T1—T> —h+2ChT1(].—m)+OA(T1—T2)+O'
0 2bhTy(m—1)

—d+ h+2chTi(m—1)—®+a(T2—T1)
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Piecewise Harvesting
000000@0000

. L 2bhTi(m—1)
Ri: A\ = To—T1’ A2 = —d h+2chTi(1—m)—a(T1—T2)+o
. . —2h+2a(T2—T1)+O' _ 2th1(m—1)
Ry: M\ = =T, , A= —d+ h+2chT1(m—1)—®+a(T2—T1)

where & = \/h2 4 2ah(2T; — 1)(Ty — T2) + a2(T1 — T2)?

R1: never be of center-type or focus.

Ry if T < % then Ry will also be real (saddle or node).

There was a saddle-node bifurcation at Ry, the proof is similar to
the previous one with Sotomayor’s Theorem.
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Piecewise Harvesting
00000008000

The Jacobian at R3 is

2ad (=Q+(b—cd)h(d+(b—cd)(m—1)>T1)) ad
X~ edy(m-1) b( DA T= Tl (b-2ed)r ) b-2cd
b2 ((Q+d(fb+cd)h((bfcd)Q)h(mf1)2T1)) —2d(b—cd)
(m—1)[d(T1—T2)](b—2cd)? b—2cd

where

Q= af[b(m—1)+ d(1 +¢(1—m))[d(T1 — T2)]
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Piecewise Harvesting
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Case 3. H(x) = h,x > T,

Since rate of harvesting is constant, the behavior of this case will
be similar to case 1.
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Piecewise Harvesting
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No Periodic Solution for Linear Harvesting

Proof. First, we shift the equilibrium points to the origin by using
a change in variables. v = a(1 — m)y,

=[1+ ex(1 — m)]ds,v = a(1 — )y,z’s( = %% and % = %%
%:ax(l—x)[l-i—cx(l—m)]—xv— ;.z:T)[l‘FCX( m)] = F
&
% — xv[(b— cd)(1— m)] — dv = F>
Replacing v with y and R = % we have
RF, = %[a(l—&—cx(l—m)—x—cx2(1—m))]—1_ (T2_’7T1)y {X_XTI}
&

RFy = (b—cd)(1 — m) — g
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Piecewise Harvesting
0000000000e

Then,
a(RFl)—lozc —m)—1] - 2acx(1 —m _
T—y[[(l ) — 1] — 2acx(1 — m)] T TRy
&
5(RF2)_
Oy =0

Hence if c(1 — m) < 1, 6(RF1) + a(sz) < 0 V¥x,y > 0 which
indicates that there are no perlodlc solutions by Dulac’s Criterion.
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3 Dimensional Model
©00000000

Base 3d Model

3 Dimensional Model

x = ax(l—x)—%#—Dl(v—x)
v o= —dyv + Dy(x — v)
. b(1—m)x:

y = —dy + 1+(c(1—t?n)1)31y

(11)

Dispersal equation - some of the prey (v) is inaccessible to predator

Alexander Hare and Keilah Ebanks
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3 Dimensional Model
0®0000000

Base 3d Model

Equilibria

3 Equilibria:
Mo = (0,0,0)
Dov +dyv Dy(—Did, + Do + dycx)
My =
N ( N
B d —dD,
Mo = ey d—m) tb—cd)(Da+ d)(m 1)’ ")
where
_ b(b—cd)D1d,(m—1) — b(D2 + d,)(b(m — 1) + d(1+ ¢ — cm))«

T a(b— cd)2(Da + dy)(m — 1)2
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3 Dimensional Model
00®000000

Base 3d Model

Mo

Conditions on Mp:

if Di1d, < a(D1 + d,) then My is a saddle

if @ > D1 4 d, + D, then the point is stable

Cannot be a focus or center, if not a saddle, it is a node:
Biologically reasonable
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3 Dimensional Model
000®00000

Base 3d Model

Boundary Equilibrium: M;

It can be a saddle under some conditions, otherwise it is a
node(stable or unstable).
Not a focus or center
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3 Dimensional Model
0000@0000

Base 3d Model

Node

o8
06
0.4

02

Figure: Boundary Node: (.9159,.4585,0.000)

a=6a=6b=5c=1d=5m=1D,=1D,=11
d, =.1
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3 Dimensional Model
000008000

Base 3d Model

Orbits with y =0

Figure: Orbit in Red
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3 Dimensional Model
000000800

Base 3d Model

M,: Coexistence

Incredibly complex system of conditions governing local
behavior(Conditions on the sign of the real part of eigenvalues, or
Trace Determinant Expressions)

Numerical simulations were obtained

Alexander Hare and Keilah Ebanks
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3 Dimensional Model
000000080

Base 3d Model

M>: Focus

06 1

Figure: Coexistence Focus: (.2264,.1134,.7828)

a=6a=6b=5c=1d=1m=1D=1D,=11
d, =.1
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3 Dimensional Model
00000000e

Base 3d Model

Double Transcritical Bifurcation

Figljre: 2 Transcritical Bifurcations
a=1l,a=1c=.2,d=.1,d,=.4D,=2,m=.1
Sotomayor’s Theorem was used to prove the result of XPPAUT,

but the system was too complicated to effectively set conditions
for A\=0
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3 Dimensional Model
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3-Dimensional System with Harvesting

3d System: Harvesting

A new 3-Dimensional system includes the harvesting function
H(x) = h in the prey equation. Thus:

X ax(l—x)—%—Dl(v—x)—h

v = dyv+ Dyx—v) (12)
. b(1—m)x

y o= —dy e

Alexander Hare and Keilah Ebanks

Dynamics and Bifurcations in Predator-Prey Models with Refuge, Dispersal and Threshold Harvesting



3 Dimensional Model

0@00

3-Dimensional System with Harvesting

Orbit

With this modification, periodic orbits and Hopf bifurcation appear.

Figure: 3 Orbits

a=1a=2b=1c=2h=11m=3D1=4D,=.3
d,=.3
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3-Dimensional System with Harvesting

Hopf Bifurcation
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3-Dimensional System with Harvesting

Conclusions

@ Studied three models, with different harvesting functions and
refuge

@ 3-D model included dispersal of prey, in two different habitats

@ Local stability was analyzed

@ Existence of saddle-node and Hopf bifurcations was proved

@ Other bifurcations were numerically detected

@ Unstable periodic solutions were computed

@ Non-existence of periodic solutions under certain conditions

was proved

@ Influence of refuge on prey density was analyzed
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