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Overview

Last Model

ẋ = αx(1− x)− a(1−m)xy
1+c(1−m)x − H(x)

ẏ = −dy + b(1−m)xy
1+c(1−m)x

(1)

where H(x) = h
each of α, a, b, c , d , h,m and b are positive real parameters
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Overview

Continuation

New H(x)

H(x) =


0 x < T1
h(x−T1)
T2−T1

T1 ≤ x ≤ T2

h x > T2

(2)

3-D Model:

ẋ = αx(1− x)− a(1−m)xy
1+c(1−m)x + D1(v − x)

v̇ = −dv v + D2(x − v)

ẏ = −dy + b(1−m)x1y
1+c(1−m)x1y

(3)
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Overview

Saddle Point

Given a dynamical system ẋ = Bx , specifically at the solution
x(t) = eBtx0 if the eigenvalues of B are real with opposite sign,
the point x0 is a saddle point.
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Figure: Example of Saddle Point
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Overview

Node

If the eigenvalues are reals that have the same sign, the point is a
node.
If both are positive, then the point is unstable.
If negative, (asymptotically) stable.
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Figure: Example of Node
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Overview

Focus

If the eigenvalues are complex conjugates, the point is a focus.
If the real parts are positive, the point is unstable.
If the real parts are negative, the point is (asymptotically) stable.
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Figure: Example of Focus
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Overview

Center

If the eigenvalues are purely imaginary, then the equilibrium point
is of center type. This also indicates that the equilibrium is
non-hyperbolic.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
(a)

−1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
(b)

Figure: Example of Center
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Overview

Non-Hyperbolic Points

This method only works for hyperbolic equilbrium points (from
Hartman-Grobman Theorem)

For non-hyperbolic equilibrium points and some global analysis we
need to perform bifurcation analysis.

Hartman-Grobman:
Indicates that near a hyperbolic equilibrium point x0, the nonlinear
system ẋ = f (x) has the same qualitative structure as the linear
system ẋ = Ax with A = Df (x0)
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Overview

Model 1: H(x) = h

Analyze the model by finding equilibrium points and their stability.
3 equilibrium points:

P0 =

(
α−
√
−4αh + α2

2α
, 0

)
, P1 =

(
α +
√
−4αh + α2

2α
, 0

)
,

P2 =

 d

(b − cd)(1−m)
, b
− h

d − (b(m−1)+d(1+c−cm)α
(b−cd)2(m−1)2 )

a


2 boundary points on the x-axis (predator extinction)
1 interior boundary point (coexistence of the species)
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Overview

Trace-Determinant Analysis

The Jacobian J(x , y) is acxy(m−1)2

z2 − α(x − 1)− ay(m−1)
z − αx −ax(m−1)

z

by(m−1)
z2

bx(m−1)
z − d


where z = cx(m − 1)− 1.
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Overview

Conditions

if D < 0, point is a saddle
if D > 0

T 2 − 4D ≥ 0, point is a node
T > 0, unstable
T < 0, stable

T 2 − 4D < 0, point is a focus
T > 0, unstable
T < 0, stable

T = 0, point is of center-type (non-hyperbolic)
We want to look for conditions on our parameters that determine
which type of equilibrium point is present.
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Boundary Points

Boundary Points

The Jacobians evaluated at P0 and P1 are (respectively)
α− α3 + α2(

√
α2 − 4αh) − a

c −
a

c

(
αc( α

2 −
√

α2−4αh
2 (m−1))

)

0
αb

[
α
2 +

√
α2−4αh

2

]
(m−1)

αc[ α
2 +

√
α2−4αh

2 ](m−1)−1
− d


 (α− α3 − α2(

√
α2 − 4αh) − a

c −
a

c(αc( α
2 −
√

α2−4αh
2 (m−1)))

0
αb[ α

2 −
(
√

α2−4αh)
2 ](m−1)

αc[ α
2 −
√

α2−4αh
2 ](m−1)−1

− d


α ≥ 4h

from the equilibrium points that we found.
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Boundary Points

Boundary: P1

Because the matrices for P0 and P1 are upper triangular, using the
eigenvalues to determine behavior can be done easily.
Given P1 is

(α− α3 − α2(
√
α2 − 4αh) − a

c −
a

c(αc( α
2
−
√

α2−4αh
2

(m−1)))

0
αb[ α

2
− (
√

α2−4αh)
2

](m−1)

αc[ α
2
−
√

α2−4αh
2

](m−1)−1
− d


The two eigenvalues are

λ1 = α− α3 − α24

λ2 =
αb[α2 −

(
√
α2−4αh)

2 ](m − 1)

αc[α2 −
√
α2−4αh

2 ](m − 1)− 1
− d
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Boundary Points

Boundary P1 cont

4 can range from 0 to α, dependent on h. Thus, λ1 is necessarily
positive if α < 1/4, but may be positive even if α = 1
λ2 is complicated by the term b − cd if b < cd , λ2 > 0
but if b > cd , then λ2 > 0 if λ < −d

(b−cd)Θn

where Θ = α/2−4/2 and 4 =
√
α2 − 4αh
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Coexistence Point

Coexistence Point

At P2, the determinant (D) and trace (T ) were evaluated to be:

D = αd(2x − 1)− adyn

z2
− αbx(2x − 1)n

z
(4)

T = −α(2x − 1)− d +
bxn

z
− ayn

z
+

acxyn2

z2
(5)

where z = cx(m − 1)− 1 and n = m − 1
Note that z < n < 0.
Complex series of conditions to determine the behavior of this
point(explained in previous presentation).
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Phase Portraits

Stable Focus

Since T < 0, D < 0 and T 2 − 4D < 0, P2 is a stable focus.
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Figure: Stable Focus Phase Portrait

α = .6 a = .6 b = .5 c = .1 d = .2 m = .1 h = .1
T = −.0575 D = .0204 T 2 − 4D = −.0783

(0.4630, 0.2049)
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Phase Portraits

Stable Node

Since T < 0, D > 0 and T 2 − 4D > 0, P2 is a stable node.
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Figure: Stable Node Phase Portrait

α = .6 a = .6 b = .5 c = .1 d = .3 m = .1 h = .1
T = −.2825 D = .0094 T 2 − 4D = .0421

(0.7092, 0.0659)
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Sotomayor’s Theorem

Bifurcations

Drastic change in qualitative behavior of solutions for a small
change in one or more parameters

Can be (usually) detected using XPPAUT
Proven using Sotomayor’s Theorem
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Figure: Saddle-Node Bifurcation Diagram
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Sotomayor’s Theorem

Sotomayor’s Theorem

Theorem

Suppose that f (x0, µ0) = 0 and that the n × n matrix
A ≡ Df (x0, µ0) has a simple eigenvalue λ = 0 with eigenvector v
and that AT has an eigenvector w corresponding to the eigenvalue
λ = 0. Furthermore, suppose that A has k eigenvalues with
negative real part and (n − k − 1) eigenvalue with positive real
part and that the following conditions are satisfied:

wT fµ(x0, µ0) 6= 0, wT D2f (x0, µ0)(v, v) 6= 0. (6)

Then the system experiences a saddle-node bifurcation at the
equilibrium point x0 as the parameter µ passes through the
bifurcation value µ = µ0.

Alexander Hare and Keilah Ebanks

Dynamics and Bifurcations in Predator-Prey Models with Refuge, Dispersal and Threshold Harvesting



Introduction Deriving Equilibrium Behavior Bifurcations Piecewise Harvesting 3 Dimensional Model Previous Research

Sotomayor’s Theorem

Application of Sotomayor’s Theorem

Theorem

If x = 1
2 , b 6= dz

x(m−1) and α ≥ 4h, then systems Model 1 and

Model 2 undergoes a saddle-node bifurcation at ( 1
2 , 0).

Proof.

w =

[
1

axn
bxn−dz

]
fµ(x0, µ0) =

[
−1 0

]
(7)

Thus
wT fµ(x0, µ0) 6= 0 (8)
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Sotomayor’s Theorem

D2f (x0)(v , v)

D2f (x0)(v , v) = ∂2f1(x0)
∂x2 v1v1 +

∂f 2
1 (x0)
∂x∂y v1v2 +

∂f 2
1 (x0)
∂x∂y v2v1 + ∂2f1(x0)

∂y2 v2v2

∂2f2(x0)
∂x2 v1v1 +

∂f 2
2 (x0)
∂x∂y v1v2 +

∂f 2
2 (x0)
∂x∂y v2v1 + ∂2f2(x0)

∂y2 v2v2


wT D2f (P2)(v , v) = wT


−2α− an

z2

(
axn

bx(m−1)−dz

)
b(1−m)

z2

(
axn

bxn−dz

)


= −2α +
−an

z2

(
axn

bxn − dz

)
− bn

z2

(
axn

bxn − dz

)2

6= 0
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Hopf Bifurcation

Other Bifurcations
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Figure: Saddle-Node, Transcritical and Hopf Bifurcations

Alexander Hare and Keilah Ebanks

Dynamics and Bifurcations in Predator-Prey Models with Refuge, Dispersal and Threshold Harvesting



Introduction Deriving Equilibrium Behavior Bifurcations Piecewise Harvesting 3 Dimensional Model Previous Research

Hopf Bifurcation

Hopf Bifurcation

Theorem

Under the conditions for the coexistence equilibrium P2 to be of
center-type, there exists a Hopf bifurcation for the system.

Proof. For a system of the form:

ẋ = ax + by + p(x , y) and ẏ = cx + dy + q(x , y)

where
p(x , y) =

∑
aijx

iy j =
(a20x2 + a11xy + a02y 2) + (a30x3 + a21x2y + a12xy 2 + a03y 3) and
q(x , y) =

∑
bijx

iy j =
(b20x2 + b11xy + b02y 2) + (b30x3 + b21x2y + b12xy 2 + b03y 3)
with ad − bc > 0 and a + d = 0.
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Hopf Bifurcation

First, we shift our equilibrium point of P2 to the origin via the
change in coordinates x̄ = x − x∗ and ȳ = y − y∗ and then we
expand our expressions for x̄ and ȳ in a power series to get

ẋ = α(x̄ + x∗)(1− (x̄ + x∗)) − a(1−m)(x̄+x∗)(ȳ+y∗)
1+c(1−m)(x̄+x∗) − h

ẏ = −d(ȳ + y∗) + b(1−m)(x̄+x∗)(ȳ+y∗)
1+c(1−m)(x̄+x∗)

(9)
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Hopf Bifurcation

Hopf Bifurcation at P2

a10 = α(1− 2x∗)− a(1−m)y∗

w3 , a01 = −a(1−m)x∗

w , a20 =

−α + ac(1−m)2y∗

w3 , a11 = −a(1−m)
w2 , a02 = 0, a21 = ac(1−m)2

w3 , a30 =

−ac2(1−m)3y∗

w4 , b10 = b(1−m)y∗

w2 ,

b01 = −d + b(1−m)x∗

w , b20 = −bc(1−m)2y∗

w3 , b11 = b(1−m)
w2 , b02 =

0, b03 = 0, b12 = 0, b21 = −bc(1−m)2

w3 , b30 = bc2(1−m)3y∗

w4

where w = 1 + c(1−m)x∗.

σ = 244.213 6= 0

D = a10b01 − a01b10 = 0.00143 > 0

T = a10 + b01 = 3.61973 ∗ 10−10 ≈ 0

P2 is also of center-type.
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Coexistence

Influence of Refuge on Coexistence

dx3

dm
=

d(b + cd)

[(b − cd)(1−m)]2
> 0

&

dy3

dm
=

bh

ad(1−m)3(b − cd)2
[2αd − (1−m)(b − αcd ] > 0

Conditions:
If b > αcd , then dy3

dm > 0 if 0 < m < m∗ where m∗ = b−(c+2)αd
b−αcd or

dy3
dm < 0 if m∗ < m < 1.

Else, if b < αcd , then m∗ < m < 1 and dy3
dm < 0 and if

0 < m < m∗ then dy3
dm > 0.
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Model 2: Threshold Harvesting

H1(x) =


0 x < T1
h(x−T1)
T2−T1

T1 ≤ x ≤ T2

h x > T2

(10)
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Case 1: H(x) = 0, x < T1

Equilibrium Points

Q1 = (0, 0), Q2 = (1, 0)

Q3 =

(
d

(b − cd)(1−m)
,

b

a

(
(b − cd)(1−m)− d

(b − cd)2(1−m)2

))

General Jacobian 1− 2x − ay(m−1)2

z2 − α(x − 1)− ay(m−1)
z − αx −ax(m−1)

z

by(m−1)
z2

bx(m−1)
z − d


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The Jacobian of Q1 is J(0, 0) =

 1 0

0 −d

 so Q1 is a saddle.

The Jacobian of Q2 is

J(1, 0) =

 −1 − a(1−m)
1+c(1−m)

0 −d + b(1−m)
1+c(1−m)


Conditions:
(a)Q2 is a saddle if (1−m)b > [1 + (1−m)c]d .
(b)Q2 is a stable node if (1−m)b < [1 + (1−m)c]d .
(c)Q2 is never a focus or center type.
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The Jacobian at Q3 is

J(x3, y3) =


d [b−cd)(c(1−m)−1)−2cd ]

b(b−cd)(1−m) −ad
b

(b−cd)(1−m)−d
a(1−m) 0



Using Trace Determinant Analysis, D = d [(b−cd)(1−m)−d ]
b(1−m) ,

T 2 − 4D = d
b2(1−m)2

[
d [−(b−cd)−c(b−cd)(1−m)2]

(b−cd)2 − 4b(1−m)[(b − cd)(1−m)− d ]
]

D > 0

given the conditions that b − cd and d < (b − cd)(1−m)
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T =
d [b − cd)(c(1−m)− 1)− 2cd ]

b(b − cd)(1−m)

Q3 can never be a saddle.

Q3 is a node if d [−(b − cd)− c(b − cd)(1−m)]2 ≥
4b(b − cd)2(1−m)[(b − cd)(1−m)− d ].
-If (b − cd)[c(1−m)− 1] < 2cd , then the node is stable, and
unstable if the inequality is reverse.

Q3 is a focus if d [−(b − cd)− c(b − cd)(1−m)]2 <
4b(b − cd)2(1−m)[(b − cd)(1−m)− d ].
- If (b − cd)[c(1−m)− 1] < 2cd , then the focus is stable,
and unstable if the inequality is reverse.

Q3 is of center-type if (b − cd)[c(1−m)− 1] = 2cd .
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Case 2:H(x) = h(x−T1)
T2−T1

, T1 ≤ x ≤ T2

Three Equilibrium Points

R1 =

(
h − α(T1 − T2)− σ

2α(T2 − T1)
, 0

)
, R2 =

(
−h + α(T1 − T2)− σ

2α(T2 − T1)
, 0

)
where σ =

√
4αhT1(T1 − T2) + (h + α(−T1 + T2))2 and

h > α(T1 − T2) + σ.
R3 = (x3, y3)

x3 =
d

(b − cd)(1−m)

y3 =

b−α[b(m−1)+d(1+c(1−m))][−d(b−cd)(T1−T2)]+h(m−1)(−d−(b−cd)(m−1)T1)(b−cd)2

[−d(b−cd)3(T1−T2)]a(m−1)2
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The general Jacobian is h
T2−T1

+ α− 2αx − ay(1−m)
z2 −ax(1−m)

z

by(1−m)
z2 −d − bx(1−m)

z


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The Jacobian at R1 is
σ

T2−T1

2αhT1(m−1)
h+2chT1(1−m)−α(T1−T2)+σ

0 −d − 2bhT1(m−1)
h+2chT1(1−m)−α(T1−T2)+σ


and at R2

−2h−2α(T1−T2)+σ
T1−T2

2ahT1(m−1)
−h+2chT1(1−m)+α(T1−T2)+σ

0 −d + 2bhT1(m−1)
h+2chT1(m−1)−Φ+α(T2−T1)


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R1 : λ1 = σ
T2−T1

, λ2 = −d − 2bhT1(m−1)
h+2chT1(1−m)−α(T1−T2)+σ

R2 : λ1 = −2h+2α(T2−T1)+σ
T1−T2

, λ2 = −d+ 2bhT1(m−1)
h+2chT1(m−1)−Φ+α(T2−T1)

where Φ =
√

h2 + 2αh(2T1 − 1)(T1 − T2) + α2(T1 − T2)2

R1: never be of center-type or focus.
R2: if T1 <

1
2 then R2 will also be real (saddle or node).

There was a saddle-node bifurcation at R1, the proof is similar to
the previous one with Sotomayor’s Theorem.
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The Jacobian at R3 is
α− 2αd

(b−cd)(m−1) + b
(

(−Ω+(b−cd)h(d+(b−cd)(m−1)2T1))
(m−1)[d(T1−T2)](b−2cd)2

)
ad

b−2cd

b2
(

(Ω+d(−b+cd)h((b−cd)2)h(m−1)2T1)
(m−1)[d(T1−T2)](b−2cd)2

)
−2d(b−cd)

b−2cd


where

Ω = α[b(m − 1) + d(1 + c(1−m))[d(T1 − T2)]
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Case 3. H(x) = h, x > T2

Since rate of harvesting is constant, the behavior of this case will
be similar to case 1.
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No Periodic Solution for Linear Harvesting

Proof. First, we shift the equilibrium points to the origin by using
a change in variables. v = a(1−m)y ,
dt = [1 + cx(1−m)]ds,v̇ = a(1−m)ẏ ,dx

ds = dx
dt

dt
ds and dv

ds = dv
dt

dt
ds

dx

ds
= αx(1− x)[1 + cx(1−m)]− xv − h(x − T1)

T2 − T1
[1 + cx(1−m)] = F1

&
dv

ds
= xv [(b − cd)(1−m)]− dv = F2

Replacing v with y and R = 1
xy , we have

RF1 =
1

y
[α(1 + cx(1−m)− x − cx2(1−m))]− 1−

h

(T2 − T1)y

[
x − T1

x

]
&

RF2 = (b − cd)(1−m)−
d

x
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Then,

∂(RF1)

∂x
=

1

y
[α[c(1−m)− 1]− 2αcx(1−m)]− hT1

(T2 − T1)x2y

&

∂(RF2)

∂y
= 0

Hence if c(1−m) < 1, ∂(RF1)
∂x + ∂(RF2)

∂y < 0 ∀x , y > 0 which
indicates that there are no periodic solutions by Dulac’s Criterion.
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Base 3d Model

3 Dimensional Model

ẋ = αx(1− x)− a(1−m)xy
1+c(1−m)x + D1(v − x)

v̇ = −dv v + D2(x − v)

ẏ = −dy + b(1−m)x1y
1+c(1−m)x1y

(11)

Dispersal equation - some of the prey (v) is inaccessible to predator
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Base 3d Model

Equilibria

3 Equilibria:
M0 = (0, 0, 0)

M1 = (
D2v + dv v

D2
,

D2(−D1dv + D2α + dvα)

(D2 + dv )2α
, 0)

M2 = (
d

(b − cd)(1−m)
,

−dD2

(b − cd)(D2 + dv )(m − 1)
, γ)

where

γ =
b(b − cd)D1dv (m − 1)− b(D2 + dv )(b(m − 1) + d(1 + c − cm))α

a(b − cd)2(D2 + dv )(m − 1)2
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Base 3d Model

M0

Conditions on M0:
if D1dv < α(D1 + dv ) then M0 is a saddle
if α > D1 + dv + D2 then the point is stable
Cannot be a focus or center, if not a saddle, it is a node:
Biologically reasonable
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Base 3d Model

Boundary Equilibrium: M1

It can be a saddle under some conditions, otherwise it is a
node(stable or unstable).
Not a focus or center
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Base 3d Model

Node
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Figure: Boundary Node: (.9159, .4585, 0.000)

α = .6 a = .6 b = .5 c = .1 d = .5 m = .1 D1 = .1 D2 = .1
dv = .1

Unlike previous model, boundary points can attract from
coexistence
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Base 3d Model

Orbits with y = 0
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Figure: Orbit in Red
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Base 3d Model

M2: Coexistence

Incredibly complex system of conditions governing local
behavior(Conditions on the sign of the real part of eigenvalues, or
Trace Determinant Expressions)
Numerical simulations were obtained
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Base 3d Model

M2: Focus
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Figure: Coexistence Focus: (.2264, .1134, .7828)

α = .6 a = .6 b = .5 c = .1 d = .1 m = .1 D1 = .1 D2 = .1
dv = .1
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Base 3d Model

Double Transcritical Bifurcation
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Figure: 2 Transcritical Bifurcations

a = .1, α = 1, c = .2, d = .1, dv = .4,D2 = .2,m = .1

Sotomayor’s Theorem was used to prove the result of XPPAUT,
but the system was too complicated to effectively set conditions
for λ = 0
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3-Dimensional System with Harvesting

3d System: Harvesting

A new 3-Dimensional system includes the harvesting function
H(x) = h in the prey equation. Thus:

ẋ = αx(1− x) − a(1−m)xy
1+c(1−m)x − D1(v − x)− h

v̇ = dv v + D2(x − v)

ẏ = −dy + b(1−m)xy
1+c(1−m)x

(12)
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3-Dimensional System with Harvesting

Orbit

With this modification, periodic orbits and Hopf bifurcation appear.
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Figure: 3 Orbits

α = 1 a = .2 b = 1 c = .2 h = .11 m = .3 D1 = .4 D2 = .3
dv = .3
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3-Dimensional System with Harvesting

Hopf Bifurcation
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Figure: Hopf Bifurcation Diagram

α = 1 a = .2 b = 1 c = .2 h = .11 m = .3 D1 = .4 D2 = .3
dv = .3
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3-Dimensional System with Harvesting

Conclusions

Studied three models, with different harvesting functions and
refuge

3-D model included dispersal of prey, in two different habitats

Local stability was analyzed

Existence of saddle-node and Hopf bifurcations was proved

Other bifurcations were numerically detected

Unstable periodic solutions were computed

Non-existence of periodic solutions under certain conditions
was proved

Influence of refuge on prey density was analyzed
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