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How does Google Rank Web Pages?
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Basics of the Model

Consider the web as a directed graph.

Definition

Link Matrix: Given a directed graph Γ(A) with nodes
P1,P2, . . . ,Pn, the adjacency matrix Anxn has an entry in aij ⇐⇒
Pi has a link to Pj . In the context of the web, the value given to
each entry will be 1

r , where r is the number of outlinks from a node
Pi , and we will call this matrix the Link Matrix H.

Remark : This Link Matrix is (nearly) row stochastic.
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Stochasticity

Definition

Row Stochastic: Anxn is row Stochastic if it is nonnegative and
the entries of each row add up to 1.

Theorem

If Anxn is a stochastic matrix, then its eigenvalues all have the
property:

|λi | ≤ 1, i = 1, 2, . . . (1)

and λ = 1 is always an eigenvalue.
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How does this Relate to Web Searches?

An ideal ranking would consider both the incoming and outgoing
links of a webpage.

To formalize this concept, let’s denote the rank of a webpage Pj by
r(Pj), then

r(Pj) =
∑

Pi εBPj

r(Pi )

|Pi |
(2)

where BPj
is the set of all pages leading to Pj and |Pi | is the

number of links coming from Pi .

Therefore, to calculate the ranking of one webpage, one must
know the rankings of all the pages that link to it. In other words, a
vector of page rankings multiplied by row j of the Link matrix
should give the ranking of page j.
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The Power Method

To quickly calculate this vector, an eigenvector with eigenvalue
one, we will initially consider the Power Method.

Theorem

If a matrix Anxn has a dominant eigenpair and n linearly
independent eigenvectors, then for an arbitrary x0 the iteration
xk+1 = Axk (k = 0,1,2, . . . ) converges to the dominant

eigenvector with a rate of convergence q = |λ2|
|λ1| .

Note : When A is a stochastic matrix, the steps of the iteration
form a Markov Chain and the dominant eigenvector is the
stationary distribution vector.
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Background Definitions

Definition

Dominant Eigenpair: Given an nxn matrix A, a
dominant eigenvalue is an eigenvalue λ1 of A that satisfies the
following inequality:

|λ1| > |λ2| ≥ · · · ≥ |λm| (3)

where m ≤ n . A dominant eigenvector is the associated vector
of the dominant eigenvalue.

Definition

Left Eigenvector: A vector x 6= 0 such that xTA = λxT , or
equivalently, the right eigenvector of AT . In any case, A and AT

share eigenvalues.
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From Graphs to Matrices

Definition

Strongly Connected: A directed graph Γ(A) is
Strongly Connected if there exists a finite path leading from one
node to any other node in the graph.

Definition

Irreducible: We may call a matrix Anxn irreducible if these two
equivalent conditions are met:

• The associated graph Γ(A) is Strongly Connected.

• There exists a permutation matrix Pnxn and an integer

1 ≤ r ≤ n − 1 such that PTAP =

[
C D
0 E

]
, where 0 is an

(n-r) by r block matrix.

If a matrix is not irreducible, then it is reducible
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Perron-Frobenius Theorem

Theorem

Given Anxn, an irreducible and nonnegative matrix, then:

1 ρ(A), denoting the Spectral Radius of A, is a positive (real)
eigenvalue of A.

2 There exists a positive eigenvector associated to ρ(A).

3 ρ(A) has algebraic and geometric multiplicity one.

Remark : This theorem has many equivalent and nearly equivalent
phrasings, and this is only one of them.
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Problems

Example

Given an irreducible matrix A =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

. Then eigenvalues

are {1,−1,±i}, and there is a largest real eigenvalue.

However, in this example there is no dominant eigenvalue, and that
is exactly what we need.
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Primitive Matrices

Definition

Primitive Matrix: A nonnegative matrix Anxn is Primitive
⇐⇒ Ak > 0, for k ≥ 1

Theorem

A primitive matrix is irreducible and has only one eigenvalue of
largest magnitude.

Therefore, our inequality is met.
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Stochastic, Irreducible, Primitve Matrices

If you haven’t noticed, not every matrix is Stochastic, Irreducible,
and Primitive.

B = H + auT , where u is our Personalization Vector and

ai =

{
1 if page i is a dangling node

0 otherwise

(4)

This adds Probability row vectors to rows with all zeros. The
matrix is now a stochastic approximation of the original.

Note : The Personalization Vector u can be any probability vector
used to assign heavier weight to certain sites. It may also be en

n , in
which case each entry would be very small if n is large.
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Making Our Matrix Irreducible and Primitive

By taking steps to make the matrix irreducible, we also make it
primitive.

G = αB + (1−α)enu
T , where alpha is the damping factor . (5)

The new matrix G, our ”Google Matrix,” is now irreducible and
primitive in addition to being stochastic.

This means that λ1 = 1 will be a unique largest eigenvalue and its
corresponding eigenspaces is 1-dimensional.
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Our Damping Factor α

Theorem

Denote the spectra of B and G with σ(B) = {µ1, µ2, . . . , µn} and
σ(G ) = {λ1, λ2, . . . , λn}. Then

λk = αµk for k = 2, 3, . . .

Therefore, the separation of λ1 and λ2 will be greater, and the rate
of convergence will be faster.

Remark : A damping factor closer to 1 indicates a more accurate
approximation of the Link Matrix H, but a slower rate of
convergence.
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Other Methods

The dominant eigenvector that we are approximating is referred to
as the PageRank vector.

A common method to solving the PageRank problem is by using a
numerical method called an Arnoldi Process to construct an
approximation of a subspace spanned by the largest eigenvectors of
the Link Matrix. We call these subspaces Krylov Subspaces.

But first we must review some linear algebra.
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Orthogonal Matrices & QR Factorizations

Theorem

Given matrix Amxn with n linearly independent columns, there
exists a factorization

A = QR

where Qmxn is an orthogonal matrix and Rnxn is an invertible
triangular matrix. The columns of Q form an orthonormal basis for
col(A).

Facts About Orthogonal Matrices :

1 Qmxn is orthogonal iff QTQ = I : its left inverse is QT .

2 Given Qnxn and x ε Rn, then ||Qx ||2 = ||x ||2.
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Modifications for Arnoldi Methods

Definition

Hessenberg Matrix: A matrix Amxn is upper Hessenberg if for all
i > j + 1 , aij = 0 . A matrix is unreduced upper Hessenberg if for
all i = j + 1 , aij 6= 0 .

Example

H =


1 2 3 4
5 6 0 8
0 9 1 2
0 0 4 5

 is a square, unreduced upper Hessenberg

matrix. G =


1 1 2 3
5 8 13 21
0 0 34 55
0 0 89 144
0 0 0 233

 is a rectangular, reduced upper

Hessenberg matrix.



Introduction Creating the Google Matrix Some More Linear Algebra Arnoldi’s Method Matrix Reordering Final Remarks

Eigenspaces

Definition

Let A be of order n and let χ be a subspace of Cn. Then χ is an
Eigenspace or Invariant Subspace of A if

Aχ ≡ {Ax : xεχ} ⊂ χ. (6)

Theorem

Let υ be a subspace and let U be a basis for υ. Let V be a left
inverse of U and set

B = VAU. (7)

If χ ⊂ υ is an eigenspace of A, there is an eigenpair (L,W) of B,
such that (L,UW) is an eigenpair of A with col(UW) = χ.

We call (7) the Rayleigh Quotient.
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Rayleigh-Ritz Procedure

If the space υ contains an approximate eigenspace χ̃ of A, there
would be an eigenpair (L̃, W̃ ) of B such that (L̃,UW̃ ) is an
approximate eigenpair of A with col(UW̃ ) ∼= χ̃.

Definition

Let µ be a Ritz value (eigenvalue approximation) associated to υ.
A Refined Ritz Vector is the solution of the following problem:

min
x∈υ

||x ||=1

||Ax − µx || (8)
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Solving for the Refined Ritz Vector

Equivalently, we may write (8) as:

min
x∈κk
||x ||=1

||(A− µI )x || (9)

The solution to such problem is the right singular vector
corresponding to the smallest singular value in the SVD
factorization of (A− µI ).

We will now define SVD.



Introduction Creating the Google Matrix Some More Linear Algebra Arnoldi’s Method Matrix Reordering Final Remarks

Singular Value Decompositions

Theorem

Given a matrix Amxn there exist orthogonal matrices Umxm and
Vnxn and a diagonal matrix Σmxn such that A = UΣV T and the
following conditions hold:

1 The columns of U are the eigenvectors of AAT .

2 The columns of V are the eigenvectors of ATA.

3 Let λi be the eigenvalues of AAT or (ATA ). The entries σi
along the principal diagonal of Σ are the singular values of
A. That is, σi =

√
λi , i = 1, 2, . . . p, p = min{m, n}.

We call this the Singular Value Decomposition.
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Krylov Subspaces

Definition

Let A be nxn and u 6= 0 ε Rn. Then:

• We call the sequence u,Au,A2u, . . . ,Ak−1u the
Krylov Sequence of order k.

• We call the matrix Kk(A, u) = (u Au A2u · · · Ak−1u) the
kth Krylov Matrix.

• We call κk(A, u) = col[Kk(A, u)] the kth Krylov Subspace.

For the sake of brevity, we will omit A and u from our references
and use simply Kk or κk .
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Properties of Krylov Subspaces

Theorem

Let A and u 6= 0 be given. Then:

1 κk ⊂ κk+1 and Aκk ⊂ κk+1

2 If (λ, u) is an eigenpair of A, then Aku = λku and κk = κ1

(k = 1, 2, . . .).

3 We say that the Krylov Sequence terminates at ` if
κ`+1 = κ`.
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Arnoldi Decomposition

Definition

Let Uk+1 ε Cnx(k+1) be orthogonal and let Uk consist of the first k
columns of Uk+1. If there is a (k+1) by k unreduced upper
Hessenberg matrix Ĥk such that

AUk = Uk+1Ĥk , (10)

then we call (10) an Arnoldi Decomposition of order k. If Ĥk is
reduced, we say the Arnoldi decomposition is Reduced.

Note: (10) can also be written as AUk = UkHk + βkuk+1e
T
k ,

where βk = hk+1,k
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Arnoldi Process

Given any starting vector q0, we may construct an orthonormal set
that spans a Krylov subspace of order k + 1 for matrix A by doing
the following:

q1 = q0

||q0||

q̃2 = Aq1 − ((Aq1)Tq1)q1, q2 = q̃2

||q̃2||

...

q̃k+1 = Aqk −
k∑

i=1
(AqTk qi )qi , qk+1 = q̃k+1

||q̃k+1||

(11)
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Putting it All Together

How do we use Krylov Subspaces to find an approximation to the
dominant eigenvector?

Firstly, let Qk+1, produced from the Arnoldi process, denote our
Krylov Matrix, whose left inverse is QT

k+1

Denote the Google matrix as A. Approximating an eigenvector of
the dominant eigenvalue is equivalent to minimizing:

||Ax − λ1x ||, subject to x ε κk , ||x ||2 = 1. (12)

When λ1 = 1, (12) becomes much simpler and bares a striking
resemblance to a Refined Ritz Vector calculation.
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Simplifying Some More

As a result of the relationship AQk = Qk+1Hk+1,k we also have the
following:

QT
k AQk = QT

k (Qk+1Hk+1,k)

QT
k AQk = QT

k (QkHk,k + βkqk+1e
T
k )

QT
k AQk = QT

k QkHk,k + QT
k βkqk+1e

T
k

QT
k AQk = Hk,k

(13)

The matrix Hk is significantly smaller than Qk or A, and we also
know from this form that if (λi , vi ) is an eigenpair of Hk , then
(λi ,Qkvi ) is an approximate eigenpair of A.

Our new estimate to the dominant eigenvector is created by taking
the SVD of (Hk − I ).
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Generalized Arnoldi Method

Generalizing the Arnoldi Process, we can try to make our algorithm
a lot faster.

The idea is to generalize the dot product used to create the Krylov
Subspace.

Definition

SPD: A symmetric matrix Anxn is Symmetric Positive Definite if
xTAx > 0 for all vectors x 6= 0

Definition

G - Inner Product: Let G ε Rnxn be an SPD matrix and let x,y
ε Rn, then a G − Inner Product is

(x , y)G = xTGy (14)
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G - Orthonormality

The G-norm is defined as

||u||G =
√

(x , x)G (15)

Theorem

Given a set of k vectors q̃i such that the G - Inner Product is zero
when any two are multiplied and the G - norm of each equals one,
we call the set a G - orthonormal set of vectors.

Denote Q̃k = {q̃1 q̃2 . . . q̃k} ε Rnxk , then

Q̃T
k GQ̃k = I (16)
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Changes to the Algorithm

We now have,
AQ̃k = Q̃kH̃k,k+1

Q̃T
k GAQ̃k = H̃k

(17)

So if (λi , vi ) is an eigenpair of H̃k , then (λi , Q̃kvi ) is an eigenpair
of A.

Additionally, the residual r = Aq − q = σ̃kQ̃k+1uk , where uk is the
left singular vector associated to the singular value σ̃k .



Introduction Creating the Google Matrix Some More Linear Algebra Arnoldi’s Method Matrix Reordering Final Remarks

Choosing a Matrix G

An initial choice for G was a diagonal matrix G0 = diag{ |ri |||r ||1 },
where r is the residual defined above.
This choice is not necessarily the fastest nor is it necessarily faster
than the regular Arnoldi Method.

Other choices include:

G1 = diag{|ri |}

G2 = diag{ 1
|ri |}

(18)
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Stanford Matrix, n = 281,903 and Stanford-Berkeley Matrix, n = 685,230
(tolerance = 1 ∗ 106)

α Power Method Arnoldi G0 G1

.85 5.49 3.60 4.98 4.42

.90 8.30 5.39 6.75 6.07

.95 16.82 8.07 10.78 9.80

.99 81.82 30.59 27.64 25.04
.998 412.47 73.85 59.02 47.76

α Power Method Arnoldi G0 G1

.85 8.76 6.30 8.75 8.24

.90 13.18 9.45 12.91 12.37

.95 26.89 17.58 23.70 22.97

.99 138.11 78.20 96.96 100.76
.998 681.05 228.60 321.19 310.65

Table : Method Comparison

K = 7
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Matrix Reorderings

Other methods of speeding up calculation of the PageRank vector
include inserting iterations of the Power Method at various points
in the code and reordering the original matrix. We found
reorderings more useful.

Possible reorderings are:

• Reordering each row and column by nonzero count

• Reordering by dangling nodes

• Reverse Cuthill-McKee Reordering
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Why do Reorderings Speed Up Calculations?

Not much is known about why reordering a matrix can reduce the
computational complexity of certain matrix calculations.

Conjecture

Matrix reorderings that speed up the PageRank calculation, or
equivalently, the calculation of the stationary distribution of the
Markov chain, further separate the dominant eigenvalue from the
subdominant eigenvalue.

Remember that the rate of convergence is: q = |λ2|
|λ1| , so further

separation (in addition to that already due to the damping factor
α) should speed up the convergence.
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Dangling Nodes

Dangling Nodes are the pages that are linked to by other pages but
have no outlinks themselves. In our model, these correspond to
rows of zeros, meaning that some of the row vectors of our matrix
will be identical.

This suggests that the Markov Chain is lumpable. Other attempts
at computing PageRank more quickly have made use of reorderings
that exploit this trait.
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Lumpability

Definition

Lumpability Let A ε Rnxn be the transition probability matrix for a
Markov Chain of n states. Let S1,S2, . . . ,Sp be disjoint subsets of
states whose union contains all the states of the Markov Chain.
Then the Markov Chain is lumpable if for all partitions Sn and Sm
and states i , i ′ ε Sn ∑

jεSm

P(i , j) =
∑
jεSm

P(i ′, j), (19)

where P(i , j) denotes the probability of going from state i to state
j .
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Uses of Lumpability

• Lumping the dangling nodes together reduces the number of
states of the Markov Chain.

• A solution to the PageRank problem proposed by Lee, Golub
and Zenio involves the Power Method and Lumpability.

• An analogous method proposed by Langville and Meyer also
uses Lumpability.

• Both these methods involve using a matrix of order
card(SND) + 1.
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Effect of Reordering
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Figure : ”California” Matrix, n= 9664
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Effect of Reordering
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Figure : Reordering by nonzeros Method A and Method B
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Some Preliminary Findings

On randomly generated matrices of order 200, we found that
reordering by nonzeros reduced the absolute value of the
subdominant eigenvalue most of the time. Here are results for two
reorderings.

α Decreases Average Change Average Percent Change

.85 75.40% -.0493 -5.97%

.95 78.60% -.0727 -8.10%

.99 76.60% -.0831 -8.56%

α Decreases Average Change Average Percent Change

.85 71.40% -.0530 -6.06%

.95 72.80% .0685 -7.24%

.99 72.60% -.0659 -6.53%

Table : Decreases in Subdominant Eigenvalue
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Reordering by Nonzeros vs Other Arnoldi Methods

α Arnoldi It. Adaptive Arnoldi It. Reordered Arnoldi It.

.85 3.7278 12 3.5950 8 .7285 3

.90 5.5164 18 5.2855 12 .7524 3

.95 9.6857 31 8.3817 19 0.7231 3

.99 38.1776 126 20.1734 45 0.9803 4

.85 2.7272 7 2.8631 5 1.1732 3

.90 3.5000 9 3.4557 6 1.5193 4

.95 4.6826 12 4.565 8 1.5263 4

.99 12.4978 32 9.6114 16 1.5442 4

.85 6.7539 13 6.2199 8 2.9065 5

.90 9.8673 19 10.1653 13 3.4734 6

.95 18.7197 36 19.1228 24 3.4903 6

.99 82.5691 157 64.4411 80 4.0604 7

Table : Stanford Matrix (n = 281803), Amazon Matrix (n = 410236),
Stanford-Berkley Matrix (n = 685230)
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Accelerated Methods

Inserting iterations of the Power Method after each iteration of the
Arnoldi process yields:

x iAcc I =
Adx i

||Adx i ||2
(20)

after the ith iteration, where x i is the approximate eigenvector
produced from the Arnoldi process and d is a chosen number of
iterations for the power method (e.g. d = 10).
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Another Accelerated Method

Another accelerated Arnoldi Method, proposed by Wu, Zhang, and
Wei, solves the following minimization problem:

q = min
y∈Ck

||A(Ad−1x i + Qky)− (Ad−1x i + Qky)||2 (21)

And this is used find the next iterate:

x iAcc II =
A(Ad−1x i + Qkq)

||A(Ad−1x i + Qkq)||2
(22)
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Reordering by Nonzeros vs Accelerated Methods

α Arn (3) It. Arn (13) It. Acc (I) It.

.85 7.3929 25 7.4948 4 3.4584 5

.90 11.2047 38 11.1594 6 5.3084 7

.95 21.9187 74 20.5443 11 9.7856 13

.99 95.7948 318 87.4143 44 41.141 53

α Acc (II) It. Re (3) It Re (13) It.

.85 3.4341 4 2.9544 9 4.0481 2

.90 5.0474 5 3.3044 10 4.2328 2

.95 9.2086 11 3.682 11 4.1995 2

.99 37.3108 44 3.9675 12 4.0997 2

Table : Stanford-Berkley Matrix (n = 685,230)
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Reordering by Nonzeros vs Accelerated Methods (Cont.)

α Arn (3) It. Arn (13) It. Acc (I) It.

.85 30.3154 18 25.6454 3 18.8871 4

.90 43.865 26 35.3022 4 24.3876 5

.95 84.1615 52 42.3668 5 30.0845 6

.99 457.3376 271 70.54 8 126.0145 23

α Acc (II) It. Re (3) It Re (13) It.

.85 17.5136 3 9.3331 7 7.0687 1

.90 19.1123 4 9.0994 7 7.0620 1

.95 28.9946 5 9.1397 7 7.0252 1

.99 80.3484 14 9.0382 7 7.0634 1

Table : Wikipedia Matrix (n = 1,634,989)
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Future and Current Problems

• Are there faster choices of G?

• Which values of k and alpha are optimal?

• Are certain methods better for matrices of certain sizes or
densities?

• Can we precondition the Matrix or change it further?

• Why do matrix reorderings tend to speed up calculations?

• If so, why do all improvements make a difference?
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Preconditioning

To reduce reduce the condition number in solving linear systems,
one can use preconditioning. Instead of solving

Ax = b, (23)

we can solve
MAx = Mb. (24)

where M = L̃Ũ is an incomplete LU factorization. It is expected
that when preconditioning is complemented with reordering, our
algorithms will be even faster. However, some issues may arise.
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