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Definition of a group

I A group (G , ?) consists of a set G and a binary
operation ? that satisfies these four conditions:

I Closed (For all x , y ∈ G , x ? y ∈ G .)
I Associative (For all x , y , z ∈ G , (x ? y) ? z = x ? (y ? z).)
I Identity (There exists a unique element e ∈ G so that

for all x ∈ G , x ? e = e ? x = x .)
I Inverse (For every x ∈ G , there exists a unique x−1 ∈ G

so that x ? x−1 = x−1 ? x = e.)
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Abelian groups

I An abelian group is a group with the added property of
commutativity. That is, for all x , y ∈ G , x ? y = y ? x .

I Examples:
I The integers under addition
I The integers {1, 2, ..., p− 1} under multiplication mod p
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Non-abelian groups

I A non-abelian group is any group that is not an abelian
group. That is, there exist some x , y ∈ G so that
x ? y 6= y ? x .

I Examples:
I Rubik’s cube group
I Dihedral group

I Note that even in a non-abelian group, there are still
some pairs of elements that commute with each other.

I e and any x ∈ G
I Any x ∈ G and x−1

I etc.
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Terminology and notation

I The order of a group, written |G |, is the number of
elements in the group.

I The order of an element x ∈ G , written o(x), is the
smallest positive integer n such that xn = 1. All
elements of a finite group have finite order.

I The center of a group, written Z (G ), is the set of all
elements z ∈ G that commute with all elements of G .
If G is abelian, then Z (G ) = G .

I The centralizer of an element x ∈ G , written CG (x), is
the set of all elements of G that commute with x . If
x ∈ Z (G ), then CG (x) = G .

I An AC group is a group G such that for all
x ∈ (G \ Z (G )), CG (x) is abelian.
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Cyclic group

I The cyclic group of order n is the group generated by
one element of order n. That is, it consists of the
elements {1, a, a2, a3, ..., an−1}, with an = 1.

I Written Cn or Zn

I Zn = 〈a|an = 1〉
I Abelian
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Dihedral group

I The dihedral group of order 2n is the group of the
symmetries of a regular n-gon. It contains rotations by
0, 1

n ,
2
n , ...,

n−1
n of a full rotation as well as each of these

rotations followed by a reflection.

I r = rotation by 1
n

I s = reflection

I rn = s2 = 1

I Reflecting and then rotating is the same as rotating in
the opposite direction and then reflecting, so sr = r−1s.

I D2n = 〈r , s|rn = s2 = 1, sr = r−1s〉
I Non-abelian
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Symmetric group

I The symmetric group Sn is the group of all
permutations of n elements under composition.

I e.g. {1, 2, 3, 4, 5} → {4, 5, 1, 3, 2}
I Cycle notation: (1, 4, 3)(2, 5)

I Evaluated from right to left (like functions)

I e.g. (1, 3, 2, 4)(2, 5, 3) = (1, 3, 4)(2, 5),
(2, 5, 3)(1, 3, 2, 4) = (1, 2, 4)(3, 5)

I Non-abelian

I Cayley’s theorem: Every group is isomorphic to a
subgroup of a symmetric group.
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Homomorphisms, isomorphisms, and
automorphisms

I A homomorphism from a group (G , ?) to a group (H, ∗)
is a function φ : G → H that satisfies
φ(x ? y) = φ(x) ∗ φ(y).

I An isomorphism is a bijective homomorphism. If two
groups are isomorphic, then they are fundamentally the
same, just with different names for the elements.

I An automorphism is an isomorphism from a group to
itself.
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Direct product

I The direct product of two groups (G , ?) and (H, ∗) is
the group (G × H, •), where the set G × H is the
Cartesian product of G and H and the operation • acts
componentwise:

I (g1, h1) • (g2, h2) = (g1 ? g2, h1 ∗ h2)

I Fundamental theorem of finite abelian groups: Every
finite abelian group is isomorphic to a direct product of
some number of cyclic groups.

I If gcd(m, n) = 1, then Zm × Zn
∼= Zmn.



Introduction to
Non-Commuting

Graphs

G. Hinkle,
C. Robichaux,

R. Wood

Groups

Definition

Properties

Examples

Functions

Graph

Definition

Properties

Non-commuting
Graphs

Define

Our Research

Summary

Semidirect product

I Generalization of the direct product

I Not uniquely defined

I φ : H → Aut(G )

I G oφ H (or G o H if the choice of φ is clear)

I Any two elements of G interact the same in G o H as
they do in G ; any two elements of H interact the same
in G o H as they do in H.

I If g ∈ G and h ∈ H, then hgh−1 = φ(h)(g). When
φ(h) = id , this reduces to the direct product.

I It is sufficient to define how each of the generators of H
acts on each of the generators of G .

I D2n = Zn oφ Z2, where φ(b) is the inverse function in
Zn (i.e., φ(b)(a) = a−1, so bab−1 = a−1).
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Graph

Definition

Graph: A graph Γ is an ordered pair of disjoint sets (V ,E )
such that E is a subset of V in the form of unordered pairs.
The set V contains all vertices xi , and the set E contains all
edges xixj , which connect vertices.
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Graph Properties

Definition
Order:
The order of a graph Γ , denoted by |Γ | is the number of
vertices.

Degree:
The degree of a vertex, denoted by d(x) is the number of
vertices adjacent to a vertex x .

Connected:
A graph is connected provided that there exists a path
between each pair of vertices.
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Graph Properties

Definition
Isomorphism: Two graphs are isomorphic if there exists a
correspondence between the sets of vertices which preserves
adjacency.

Eulerian: A graph is Eulerian if there exists a circuit
containing all edges each only once.

Complete:
A graph is complete provided that each pair of vertices has
an edge between them or, in other words, are adjacent.
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Graph Properties

Definition
Clique Number:
The clique number of a graph Γ is the maximum order of a
complete subgraph of Γ .

Chromatic Number:
The chromatic number of a graph is the minimum number
of ’colors’ that can be assigned to each vertex such that no
vertices of the same color are adjacent.

Genus:
The genus of a graph is the minimum number of handles
that must be added to a surface such that the graph may be
drawn on the surface with no edges crossing.
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Graph Types

Definition
K-partite Graph:
A graph is k-partite if the vertices can be separated in
classes V1,V2, ...,Vk such that
V = V1 ∪ V2 ∪ ... ∪ Vk ,Vi ∩ Vj = ∅ for 1 ≤ i < j ≤ k , and
no edge joins two vertices of the same class.
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Graph Types

Definition
Complete K-Partite Graph:
A graph is complete k-partite denoted by Kn1,...,nk if the
graph has every ni vertices in the ith class and contains all
edges joining vertices in distinct classes.
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Non-Commuting Graph
Definition

I Definition
A non-commuting graph of a group G is the vertex set
G − Z (G ) where two distinct vertices x and y are joined by
an edge whenever xy 6= yx is called the non-commuting
graph of a group.

I The non-commuting graph of a group G will be
denoted Γ(G ).

I First considered by Paul Erdos in 1975
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Non-commuting Graphs
Examples

Example

Figure : Γ(M16)



Introduction to
Non-Commuting

Graphs

G. Hinkle,
C. Robichaux,

R. Wood

Groups

Definition

Properties

Examples

Functions

Graph

Definition

Properties

Non-commuting
Graphs

Define

Our Research

Summary

Non-commuting Graphs
Examples

Example

Figure : Γ(D12)
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Figure : Γ(A4)
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Characteristics of the Graph Related to the Group

I Genus

I Characteristic Polynomial

I Chromatic Number

I Cop Number

I Graph Isomophisms

I Eulerian

I Cliche Number



Introduction to
Non-Commuting

Graphs

G. Hinkle,
C. Robichaux,

R. Wood

Groups

Definition

Properties

Examples

Functions

Graph

Definition

Properties

Non-commuting
Graphs

Define

Our Research

Summary

Summary

I Our research is looking at the non-commuting graphs of
non-abelian groups and their properties.

I Understanding the non-commuting graph of a group
helps us understand the structure of the group.

I Presentations:
I R. Wood: Graph Genus and Other Properties
I C. Robichaux: Characteristic Polynomial
I G. Hinkle: Eulerian Non-commuting Graphs /

Automorphism Groups
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