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Overview

• Background on waterborne diseases

• Introduction to epidemic model and parameters

• Local stability analysis

• Lyapunov functions and global stability analysis

• Bifurcation analysis

• (Non)Existence of periodic solutions

• Our contribution
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Waterborne Diseases

• Mainly caused by protozoa or bacteria present in water.

• Waterborne diseases are one of the leading causes of death in
low-income countries, particularly affecting infants and
children in those areas.

• The models we have been studying use mainly V. cholera as
an example.

• Vast majority of models in the literature consider one single
community.

• First networked connectivity model introduced in late 2012.
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Why Are We Studying This Model?

• Learn about dynamical systems

• To gain a better understanding of:
• Onset conditions for outbreak
• The spread of diseases by hydrological means

• Insight

• Emergency management

• New health-care resources
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Reproduction Matrices/Values

• R0 is known as the basic reproduction number in SIR and
related models.

• This stands only when n = 1 (most research articles study only
this case)

• Outbreak occurs when R0 > 1
• With networked connectivity, this statement does not hold.

• For connectivity models, we study G0, or the generalized
reproduction matrix. When the dominant eigenvalue of this
matrix crosses the value one, an outbreak will occur. This
value is independent from the values of R0i .
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Bifurcations

• Bifurcation occurs when small changes in parameters imply
drastic changes in the solutions, number of equilibrium points,
or their stability properties.

• Disease-free equilibrium

• Transcritical Bifurcation
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The Model

Consider n communities (nodes). For i = 1, . . . , n, let

• Si = number of susceptibles in node i

• Ii = number of infectives in node i

• Bi = concentration of bacteria in water at node i

• Spatially explicit nonlinear differential model

• Communities are connected by hydrological and human
mobility networks through which a disease can spread.
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Strongly Connected

Graph Γ(P ∪Q) is strongly connected.
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The Epidemic Model (Gatto et al.)

For i = 1, ..., n (3n differential equations)

dSi

dt
= µ(Hi − Si ) −

[
(1−ms)βi f (Bi ) + ms

n∑
j=1

Qijβj f (Bj )

]
Si

dIi
dt

=

[
(1−ms)βi f (Bi ) + ms

n∑
j=1

Qijβj f (Bj )

]
Si − φIi

dBi

dt
= −µB Bi + l

( n∑
j=1

Pji
Wj

Wi
Bj − Bi

)
+

pi

Wi

[
(1−mI )Ii +

n∑
j=1

mI Qji Ij

]

where f (Bi ) =
Bi

K + Bi
.
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(Local)Stability Analysis of a Single Community

For n = 1, the model is

dS

dt
= µ(H − S)− βf (B)S

dI

dt
= βf (B)S − φI

dB

dt
= (nb −mb)B + pI

where f (B) =
B

K + B
.
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Linearization

Definition

A set S ⊂ Rn is said to be invariant with respect to x ′ = f (x) if
x(0) ∈ S =⇒ x(t) ∈ S for all t ≥ 0.

Linearization Technique:

Consider the nonlinear system x ′ = f (x) in Rn

Let x0 be a hyperbolic equilibrium point (f (x0) = 0)

Local stability analysis: Study the linear system x ′ = Ax , where

A = Df (x0), Df (x) =


∂f1
∂x1

· · · ∂f1
∂xn

...
...

∂fn
∂x1

· · · ∂fn
∂xn


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(Local)Stability Analysis of a Single Community

Theorem

Stable Manifold Theorem: Let E be an open subset of Rn containing
the equilibrium point x0 of x ′ = f (x), and let f ∈ C 1(E ). Suppose that
Df (x0) has k eigenvalues with negative real part and n − k eigenvalues
with positive real part. Then there exists a k-dimensional differentiable
manifold S tangent to the stable subspace E s of the linear system
x ′ = Ax at x0 such that S is invariant, and solutions approach x0 as
t →∞. And there exists an n − k dimensional differentiable manifold U
tangent to the unstable subspace E u of x ′ = Ax at x0 such that U is
invariant and solutions move away from x0 as t →∞.

Theorem

Hartman - Grobman Theorem: Let E be and open subset of Rn

containing a hyperbolic equilibrium point x0 of x ′ = f (x), and let
f ∈ C 1(E ). Then there exists a homeomorphism H of an open set U
containing x0 into an open set V containing x0 such that H maps
trajectories of x ′ = f (x) near x0 onto the trajectories of x ′ = Ax near x0.
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(Local)Stability Analysis of a Single Community
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(Local)Stability Analysis of a Single Community

For this model, the general Jacobian is

J(S , I ,B) =



−µ− βB

K + B
0 − βSK

(K + B)2

βB

K + B
−φ βSK

(K + B)2

0 p nb −mb


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Disease-Free Equilibrium

S∗1 = H, I ∗1 = 0, B∗1 = 0

A = J(S∗1 , I
∗
1 ,B

∗
1 ) =



−µ 0 −βH

K

0 −φ βH

K

0 p nb −mb


Characteristic Equation:
P(λ) = λ3 + (µ+ φ− nb + mb)λ2+

+

(
µφ+ (µ+ φ)(mb − nb)− βHp

K

)
λ+

+µφmb − µφnb − µβHp

K
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Routh-Hurwitz Criteria

Theorem (Routh-Hurwitz)

Given the polynomial,

P(λ) = λn + a1λ
n−1 + ...+ an−1λ+ an,

where the coefficients ai are real constants, i=1,...,n. For
polynomials of degree n=3, the Routh-Hurwitz criteria are
summarized by

a1 > 0, a3 > 0, and a1a2 > a3.

These are necessary and sufficient conditions for all of the roots of
the characteristic polynomial (with real coefficients) to lie in the
left half of the complex plane (implying stability).
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Disease-Free Equilibrium

By applying the Routh − Hurwitz Criteria to the characteristic
equation, it was found that a1 > 0, a3 > 0, and a1a2 > a3, were
true for the following inequalities,

mb > nb, Sc =
φK (mb − nb)

βp
> H = S0.

Let R0 = S0
Sc

, then R0 < 1 and our equilibrium is stable.
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Basic Reproduction Number R0

In the previous model, R0 =
β pS0

φK (mb − nb)
=

S0

Sc
. How is R0

determined in general?

Theorem (Castillo-Chavez et al.)

Consider the (n1 + n2 + n3)-dimensional system

x ′ = f (x ,E , I )
E ′ = g(x ,E , I )
I ′ = h(x ,E , I ).

Let (x∗, 0, 0) be the disease-free equilibrium. Assume the equation
g(x∗,E , I ) = 0 implicitly determines a function E = g̃(x∗, I ), and
let A = DI h(x∗, g̃(x∗, 0), 0). Assume further that A can be written
as A = M − D, where M ≥ 0 and D > 0 is diagonal. Then,

R0 = ρ(MD−1).
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Lyapunov Functions and Global Stability

Definition

Let E be an open set in Rn, and let x0 ∈ E . A function
Q : E ⊂ Rn → R is called a Lyapunov function for x ′ = f (x) if
Q ∈ C 1(E ) and satisfies Q(x0) = 0, and Q(x) > 0 if x 6= x0.

Theorem

Let R0 ≤ 1, mb > nb, and let w be a left eigenvector of the matrix
V−1F corresponding to R0 = ρ(V−1F), then the function
Q(x) = wTV−1x is a Lyapunov function of the system of
equations for n=1 satisfying Q ′(x(t)) ≤ 0.
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Lyapunov Functions and Global Stability

Our system can be written as compartmental model

x′ = F∗(x , y)− V∗(x , y), y ′ = g(x , y)

where x = [I ,B]T ∈ R2 is the disease compartment and
y = S ∈ R is the disease-free compartment, respectively. And

F =

[
∂F ∗i
∂xj

(0, y0)

]
and V =

[
∂V ∗i
∂xj

(0, y0)

]
, 1 ≤ i , j ≤ n
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Lyapunov Functions and Global Stability

Let F∗ =

[
βSB

K + B
p I

]T

and V∗ = [−φI (mb − nb)B]T , then the

matrices F and V are given by

F =

[
0

BH

K
p 0

]
, V =

[
φ 0
0 mb − nb

]
.

The matrix

V−1F =

 0
βH

Kφ
p

mb − nb
0


leads us to

ρ(V−1F) = R0 =

√
βHp

Kφ(mb − nb)
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Lyapunov Functions and Global Stability

The left eigenvector is found to be wT =

[
1 R0(

mb − nb

p
)

]
. As

Q(x) = wTV−1x, we can now write it as

Q =

[
1 R0(

mb − nb

p
)

]
1

φ
0

0
1

mb − nb


 I

B

 =
I

φ
+

R0B

p
.

Now let f(x , y) = (F− V)x − x′ and Q′ = wTV−1x′ = (R0 − 1)wT x− wTV−1f(x , y),
where

f(x , y) =


βHB

k
−

βSB

K + B

0

 .
Q′ = (R0 − 1)

(
I +

R0B

p
(mb − nb)

)
−
βB

φ

(
H

K
−

S

K + B

)
≤ 0.
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Lyapunov Functions and Global Stability

Theorem (LaSalle’s Invariance Principle)

Let Ω ⊂ D ⊂ Rn be a compact invariant set with respect to x ′ = f (x). Let

Q : D → R be a C 1 function such that Q′(x(t)) ≤ 0 in Ω. Let E ⊂ Ω be the set of all

points in Ω where Q′(x) = 0. Let M ⊂ E be the largest invariant set in E. Then

lim
t→∞

[
inf

y∈M
‖x(t)− y‖

]
= 0.

That is, every solution starting in Ω approaches M as t →∞.

Theorem

Let Ω be any compact invariant set containing the disease-free

equilibrium point. Let f, F, and V be defined as above. Suppose R0 < 1,

mb > nb, and f(x , y) ≥ 0, F ≥ 0, V−1 ≥ 0, f(0, y) = 0. Also, assume

the disease-free system y’ = g(0, y) has a unique equilibrium y = y0 >0

that is globally asymptotically stable in R. Then, the disease-free

equilibrium is globally asymptotically stable in Ω.
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Lyapunov Functions and Global Stability

The disease-free system y ′ = g(0, y) is equivalent to
S ′ = µH − µS , whose solution is S = H + e−µtC .

y0 = H is globally asymptotically stable in the disease-free system.

Q ′ = (R0 − 1)wTx−wTV−1f(x , y). Assuming Q ′ = 0 implies
x = 0. Then, the set of all points where Q ′ = 0 is
E = {(I ,B, S) : I = B = 0}. The largest and only invariant set in
E is (0, 0,H).

Therefore, the disease-free equilibrium is globally asymptotically
stable in Ω.
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Endemic Equilibrium

The endemic equilibrium represents a single isolated community
where there is interaction between susceptibles, infectives, and
bacteria in water.

S∗2 =
µH(K + B)

µ(K + B) + βB

I ∗2 =
βBµH

φ(µ(K + B) + βB)

B∗2 =
µ(pβH + Kφ(nb −mb))

φ(µ+ β)(mb − nb)
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Endemic Equilibrium

Let A =
βB

K + B
and C =

βSK

(K + B)2
,

J(S∗2 , I
∗
2 ,B

∗
2 ) =

 −(µ+ A) 0 −C
A −φ C
0 p nb −mb


Using Routh-Hurwitz criteria: As long as H > Sc (or R0 > 1), all
real parts of the eigenvalues are negative, making the endemic
equilibrium locally stable.

Therefore, endemic equilibrium is stable exactly when disease-free
equilibrium is unstable.
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Phase Portrait

β = 1, φ = 0.2, µ = 0.0001, p = 10, mb = 0.4, nb = 0.067, H =
10000, K = 1000000 and Sc = 6660
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Bifurcations

Theorem (Sotomayor)

Consider x ′ = f(x, α), where x ∈ Rn and α is a parameter. Let
(x0, α0) be an equilibrium point and assume A = Df(x0, α0) has a
simple eigenvalue λ = 0 with eigenvector v, and left eigenvector w.
If

wT fα(x0, α0) = 0,

wT [Dfα(x0,α0)v] 6= 0,

wT [D2f(x0,α0)(v, v)] 6= 0

then a transcritical bifurcation occurs at (x0,α0).

Note: D2f(x0)(u, v) =
n∑

j1=1

n∑
j2=1

∂2f(x0)

∂xj1∂xj2

uj1vj2
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Bifurcations

Theorem

The n = 1 system undergoes a transcritical bifurcation at the
disease-free equilibrium point (S∗1 , I

∗
1 ,B

∗
1 ) = (H, 0, 0) when

p =
φ(mb − nb)K

βH
, and mb > nb.

Proof:
Stability of the system at the equilibrium point depends on the
bottom right 2× 2 matrix of J, given by

J =


−µ 0 −βH

K

0 −φ βH
K

0 p nb −mb

 J∗ =

[
−φ βH

K
p nb −mb

]
.

When the detJ∗ = 0, p = p0 =
φ(mb − nb)K

βH
.
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Sotomayor’s Theorem

To satisfy the first condition of the theorem, wT fp(x0, p0) = 0, we

have wT =
[
0 1 φ

p

]
, and fp =

 0
0
I

. Then,

wT fp(x0, p0) =

[
0 1

φ

p

] 0
0
0

 = 0.
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Sotomayor’s Theorem

To satisfy the second condition of the theorem,

wT [Dfp(x0,p0)v] 6= 0, we have Dfp =


0 0 0

0 0 0

0 1 0

 . Then

wT [Dfp(x0, p0)v] =

[
0 1

φ

p

](
0 0 0

0 0 0

0 1 0





−βH

Kµ

mb − nb

p

1


)

=
φ(nb −mb)

p2
6= 0.
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Sotomayor’s Theorem

To satisfy the third condition of the theorem, wT [D2f(x0,p0)(v, v)] 6= 0,
we have

D2f(x0, p0)(v, v) =


2βH
K 2 (β

µ + 1)

− 2βH
K 2 (β

µ + 1)

0

 . Then

wT [D2f(x0, p0)(v, v)] =

[
0 1

φ

p

]
2βH
K 2 (β

µ + 1)

− 2βH
K 2 (β

µ + 1)

0


= −2βH

K 2
(
β

µ
+ 1) 6= 0.
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Bifurcations

Figure : p < p0
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Bifurcations

Figure : p = p0
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Bifurcations

Figure : p > p0
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Hopf Bifurcation

A stable focus (solutions spiral toward the equilibrium) corresponds to
λ = a± bi where a < 0. When a = 0, stability may be lost, periodic
orbits may appear, and a Hopf Bifurcation could occur. The main the
condition to prove the existence of a Hopf Bifurcation is λ = ±bi .

Proposition: A Hopf Bifurcation at the DFE does not exist.

Proof.

For the lower right block of Jacobian at the equilibrium, we have:
T = −φ+ (nb −mb) and D = (−φ(nb −mb))− (pβH/K ). To obtain
purely imaginary eigenvalues, we must have T = 0 and D > 0. But
T = 0 is only possible if nb > mb. But then D < 0.
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Periodic Solutions

Theorem (Bendixon’s Criterion in Rn)

A simple closed rectifiable curve which is invariant with respect to the differential equation,
dx

dt
= f (x), cannot

exist if any one of the following conditions is satisfied on Rn :

(i) sup

{
∂fr

∂xr
+
∂fs

∂xs
+
∑

q 6=r,s

( ∣∣∣∣ ∂fq

∂xr

∣∣∣∣ +

∣∣∣∣ ∂fq

∂xs

∣∣∣∣ ): 1 ≤ r < s ≤ n

}
< 0,

(ii) sup

{
∂fr

∂xr
+
∂fs

∂xs
+
∑

q 6=r,s

( ∣∣∣∣∣ ∂fr

∂xq

∣∣∣∣∣ +

∣∣∣∣∣ ∂fs

∂xq

∣∣∣∣∣
)

: 1 ≤ r < s ≤ n

}
< 0,

(iii) λ1 + λ2 < 0,

iv) inf

{
∂fr

∂xr
+
∂fs

∂xs
+
∑

q 6=r,s

( ∣∣∣∣ ∂fq

∂xr

∣∣∣∣ +

∣∣∣∣ ∂fq

∂xs

∣∣∣∣ ): 1 ≤ r < s ≤ n

}
> 0,

(v) sup

{
∂fr

∂xr
+
∂fs

∂xs
+
∑

q 6=r,s

( ∣∣∣∣∣ ∂fr

∂xq

∣∣∣∣∣ +

∣∣∣∣∣ ∂fs

∂xq

∣∣∣∣∣
)

: 1 ≤ r < s ≤ n

}
> 0,

(vi) λn−1 + λn > 0.

where the λi are the ordered eigenvalues of M = 1
2

[
Df (x) + Df (x)T

]
.
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Periodic Solutions

sup

{
−µ−β( B

K+B
)−φ+p, −φ+(nb−mb)+ βSK

(K+B)2 , −µ+(nb−mb)+ βSK
(K+B)2

}
< 0

p ≤ µ+ β( B
K+B

) + φ

p ≤ (nb −mb) + βSK
(K+B)2 + µ+ β( B

K+B
)

p < (nb −mb) + βSK
(K+B)2 + φ+ β( B

K+B
)

µ ≥ −nb + mb +− βSK
(K+B)2 −

βB
K+B

+ p

φ ≤ µ

φ > nb −mb + βSK
(K+B)2

φ ≥ −nb + mb +− βSK
(K+B)2 −

βB
K+B

+ p

φ ≥ µ

φ > nb −mb + βSK
(K+B)2
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The Networked Epidemic Model

First consider n = 3 (i = 1, 2, 3). This gives 9 differential
equations:

dSi

dt
= µ(Hi − Si ) −

[
(1−ms)βi f (Bi ) + ms

n∑
j=1

Qijβj f (Bj )

]
Si

dIi
dt

=

[
(1−ms)βi f (Bi ) + ms

n∑
j=1

Qijβj f (Bj )

]
Si − φIi

dBi

dt
= −µB Bi + l

( n∑
j=1

Pji
Wj

Wi
Bj − Bi

)
+

pi

Wi

[
(1−mI )Ii +

n∑
j=1

mI Qji Ij

]
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(Local) Stability Analysis of Three Communities

Jacobian J at disease-free equilibrium is



−µ 0 0 0 0 0 −H1(1− mS )β1 −H2mS Q12β2 −H3mS Q13β3

0 −µ 0 0 0 0 −H1mS Q21β1 −H2(1− mS )β2 −H3mS Q23β3

0 0 −µ 0 0 0 −H1mS Q31β1 −H2mS Q32β2 −H3(1− mS )β3

0 0 0 −φ 0 0 H1(1− mS )β1 H2mS Q12β2 H3mS Q13β3

0 0 0 0 −φ 0 H1mS Q21β1 H2(1− mS )β2 H3mS Q23β3

0 0 0 0 0 −φ H1mS Q31β1 H2mS Q32β2 H3(1− mS )β3

0 0 0
p1(1− mI )

W1K

p1mI Q21

W1K

p1mI Q31

W1K
−µB − l lP21

W2

W1

lP31
W3

W1

0 0 0
p2mI Q12

W2K

p2(1− mI )

W2K

p2mI Q32

W2K
lP12

W1

W2

−µB − l lP32
W3

W2

0 0 0
p3mI Q13

W3K

p3mI Q23

W3K

p3(1− mI )

W3K
lP13

W1

W3

lP23
W2

W3

−µB − l



Note: Bi = Bi/K
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(Local) Stability Analysis of Three Communities

We need to find general conditions for (local) stability.

We can block the Jacobian J as

J =

 J11 0 J13

0 J22 J23

0 J32 J33

 λ(J) = λ(J11) ∪ λ
[
J22 J23

J32 J33

]

J∗ =

[
J22 J23

J32 J33

]

Each block Jij is a 3× 3 matrix, and

J11 = diag(−µ).
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Irreducibility

Definition

A matrix Anxn is reducible if it is similar to a block triangular
matrix: There is a permutation matrix P such that

PT AP =

[
B C
0 D

]
, 0 ∈ Rr x (n−r), (1 ≤ r ≤ n − 1)

A matrix is irreducible if it is not reducible.
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(Local) Stability Analysis of Three Communities

J∗ is given by



−φ 0 0 H1(1− mS )β1 H2mS Q12β2 H3mS Q13β3

0 −φ 0 H1mS Q21β1 H2(1− mS )β2 H3mS Q23β3

0 0 −φ H1mS Q31β1 H2mS Q32β2 H3(1− mS )β3

p1(1− mI )

W1K

p1mI Q21

W1K

p1mI Q31

W1K
−µB − l lP21

W2

W1

lP31
W3

W1

p2mI Q12

W2K

p2(1− mI )

W2K

p2mI Q32

W2K
lP12

W1

W2

−µB − l lP32
W3

W2

p3mI Q13

W3K

p3mI Q23

W3K

p3(1− mI )

W3K
lP13

W1

W3

lP23
W2

W3

−µB − l



J∗ is irreducible.
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Metzler Matrix

Definition

A matrix M is said to be Metzler if all of the off-diagonal entries
are nonnegative.

1 If you have an Mnxn Metzler matrix, then the eigenvalue with
maximum real part is real.

α(M) = max
i

Reλi (M), i = 1, 2, ... , n

2 The Metzler matrix, M, is asymptotically stable iff α (M) < 0

Therefore J∗ is a Metzler matrix.



Introduction n=1 n=3 General n What’s Next

(Local) Stability Analysis of Three Communities

A very useful variation of Perron-Frobenius theorem:

Theorem

Let M ∈ Rnxn be a Metzler matrix. If M is irreducible, then
λ∗ = α(M) is a simple eigenvalue, and its associated eigenvector
is positive.

When λ∗ reaches zero, the det(J∗) = 0 and the disease free
equilibrium point will lose stability.
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Determinant of J∗

J∗ =

[
J22 J23

J32 J33

]
, det(J∗) = (J22J33)− (J23J32) = 0

J22 = −φU3

J23 = mSHQβ + (1−mS )Hβ

J23 =
mI

K
pW−1QT +

1−mI

K
pW−1

J33 = −(µB + l)U3 + l W−1PTW

det(J∗) = det

[
φ(µB + l)U3 − φl W−1PTW −

mS mI

K
pW−1QTHQβ

−
mI (1−mS )

K
pW−1QTHβ −

(1−mI )mS

K
pW−1HQβ

−
(1−mI )(1−mS )

K
pW−1Hβ

]
= 0

where p,H, β,W,W−1 are diagonal, hence commute with each other.
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Determinant of J∗

One can prove that det(J∗) = 0 ⇐⇒ det(U3 − G0) = 0

Thus, the the disease-free equilibrium loses stability when
det(U3 − G0) = 0, where

G0 =
l

µB + l
PT +

µB

µB + l
T0

T0 =
(1−mI )(1−mS )R0 + mS mIR

IS
0 + mI (1−mS )RI

0 + (1−mI )mSR
S
0 .

Is a transcritical bifurcation happening here?

Stay put!
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Theorems

Theorem (Perron-Frobenius)

If Anxnis non-negative and irreducible, then:

1 ρ(A) is a positive eigenvalue of A

2 The eigenvector associated to ρ(A) is positive

3 The algebraic and geometric multiplicity of ρ(A) is 1

Theorem (Berman, Plemmons)

Let A = sI − B, where B is an nxn nonnegative matrix. If there
exists a vector x > 0, such that Ax ≥ 0, then ρ(B) ≤ s.
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Dominant Eigenvalue

• G0 > 0 and irreducible

• ρ(G0) is a simple eigenvalue (Perron-Frobenius)

• det(U3 − G0) = 0 implies 1 is an eigenvalue of G0

• ρ(G0) ≤ 1 (Berman, Plemmons)

Therefore, ρ(G0) = 1 and 1 is the dominant eigenvalue.

This proves: The disease free equilibrium loses stability when
ρ(G0) crosses one, and an outbreak occurs.

ρ(G0) is called the Generalized Reproduction Number.
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Lyapunov Functions and Global Asymptotic Stability

First write equations as a compartmental system:

x′ = F∗(x , y)− V∗(x , y), y′ = g(x , y)

where x = [I1 I2 I3 B1 B2 B3]T and y = [S1 S2 S3]T .

• R0 ≤ 1 does not determine stability for connected communities.

• Cannot use ρ(G0)

• Need to find a new condition.

• Exploited the fact that J∗ = F− V to prove:

λ∗(J∗) ≤ 0 ⇔ λ̃∗(V−1J∗) ≤ 0 ⇔ λ∗F (V−1F) ≤ 1

The three matrices above are Metzler!
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Lyapunov Functions and Global Asymptotic Stability

Theorem

Let 0 < λ∗F (V−1F) ≤ 1, and let w be a left eigenvector of V−1F
corresponding to λ∗F (V−1F). Then the function Q(x) = wTV−1x
is a Lyapunov function satisfying Q ′ ≤ 0.

Q = 1
Kφ(µB +l)λ∗F

[
I1

(
p1(1−mI )

W1
+ p2mI Q12

W2
+ p3mI Q13

W3

)
+

+ I2

(
p1mI Q21

W1
+ p2(1−mI

W2
+ p3mI Q23

W3

)
+

+ I3

(
p1mI Q31

W1
+ p2mI Q32

W2
+ p3(1−mI )

W3

)]
+

+ 1
µB +l (B1 + B2 + B3)

Q(x0) = Q(0, 0,H) = 0 and Q(x) > 0 when x 6= x0.

Q ′ = (λ∗F − 1)wTx−wTV−1f(x , y) ≤ 0
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Lyapunov Functions and Global Asymptotic Stability

Theorem (LaSalle’s Invariance Principle)

Let Ω ⊂ D ⊂ Rn be a compact invariant set with respect to
x ′ = f (x). Let Q : D → R be a C 1 function such that
Q ′(x(t)) ≤ 0 in Ω. Let E ⊂ Ω be the set of all points in Ω where
Q ′(x) = 0. Let M ⊂ E be the largest invariant set in E. Then

lim
t→∞

[
inf

y∈M
‖x(t)− y‖

]
= 0.

That is, every solution starting in Ω approaches M as t →∞.
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Lyapunov Functions and Global Asymptotic Stability

Using LaSalle’s invariance principle we can now prove global
asymptotic stability.

Theorem

Let Ω be any compact invariant set containing the disease-free
equilibrium point of the compartmental model and let F, V,
V−1 ≥ 0, f(x , y) ≥ 0, and f(0, y) = 0. Assume 0 < λ∗F (V−1F) < 1
and assume the disease-free system y′ = g(0, y) has a unique
equilibrium y = y0 > 0 that is globally asymptotically stable in the
disease-free system. Then, the disease-free equilibrium of the
nine-dimensional system is globally asymptotically stable in Ω.
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Lyapunov Functions and Global Asymptotic Stability

Solving for S explicitly gives S =

 H1 + e−µtC1

H2 + e−µtC2

H3 + e−µtC3

.

Q ′ = (λ∗F − 1)wTx−wTV−1f(x , y). Assuming Q ′ = 0 implies
x = 0. Then, the set of all points where Q ′ = 0 is
E = {(Ii ,Bi ,Si ) : Ii = Bi = 0}.

Applying LaSalle’s invariance principle shows that the disease-free
equilibrium is globally asymptotically stable.
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Existence of Endemic Equilibrium

Recall that λ∗(J∗) ≤ 0 ⇐⇒ λ∗F (V−1F) ≤ 1.

Theorem

Let Ω be any compact invariant set containing the disease-free
equilibrium point of compartmental model. Let F, V, V−1 ≥ 0,
f(x , y) ≥ 0, and f(0, y) = 0. If λ∗(J∗) > 0, then there exists at
least one endemic equilibrium.
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Hydrological Transportation and Human Mobility

Pij =



Pout

dout(i)Pout + din(i)Pin
if i → j

Pin

dout(i)Pout + din(i)Pin
if i ← j

0 otherwise

Qij =
Hj e(−dij/D)

n∑
k 6=i

Hk e(−dik/D)
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Geography of Disease Onset

J∗
[

i
b

]
= λ∗

[
i
b

]

J∗ =

[
A B
C D

]

Ai + Bb = λ∗i
Ci + Db = λ∗b

i = −A−1Bb and we can re-write the above expression as
CA−1Bb + Dd = 0

(AD− CB)b = 0
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Geography of Disease Onset

After MUCH simplification, we get

AD− CB = φ(µB + l)

[
U3 −W−1

(
l

µB + l
PT +

µB

µB + l
T0

)
W

]
Substituting G0, we get

AD− CB = φ(µB + l)(U3 −W−1G0W).

We can now write (U3 −W−1G0W)b = 0, then

Wb = G0Wb

Thus, Wb is the eigenvector of G0 associated to the eigenvalue
λ = 1.
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Geography of Disease Onset

i = A−1Bb

After substitution and simplification we get,

i =
msHQβ + (1−ms)Hβ

φ
(W−1g0)
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Bifurcations

• Recall that J∗ determines stability of disease-free equilibrium,
and is a Metzler matrix.

• When λ∗ = 0 stability is lost.

• Proved existence of transcritical bifurcation using Sotomayor’s
theorem.

• Choose p1 to be our varying parameter.
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Sotomayor’s Theorem

Let f = [f1 f2 · · · f9]T , and x = (S1 S2 S3 I1 I2 I3 B1 B2 B3)T so

x0 = (H1 H2 H3 0 0 0 0 0 0)T .

Take partial derivatives of f with respect to p1 to arrive at the
vector

fp1
=



0

0

0

0

0

0

[(1− mI )I1 + mI (Q21I2 + Q31I3)] W−1
1

0

0



.

First condition : wT fp1(x0, p
0
1) = 0
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Sotomayor’s Theorem

Second condition:

wT [Dfp1(x0, p
0
1)v] =

H1

φ
[(1−mS )β1 + mS Q12β2 + mS Q13β3] (1−mI )W−1

1 +

H2

φ
[mS Q21β1 + (1−mS )β2 + mS Q23β3] mI Q21W−1

1 +

H3

φ
[mS Q31β1 + mS Q32β2 + (1−mS )β3] mI Q31W−1

1 6= 0
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Sotomayor’s Theorem

D2f(x0, p
0
1)(v, v) is found.

Third condition: wT [D2f(x0, p
0
1)(v, v)] =

w4(2(1−mS )β1v1 + 2mS Q12β2v1 + 2mS Q13β3v1

− 2H1(1−mS )β1 − 2H1mS Q12β2 − 2H1mS Q13β3)

+ w5(2mS Q21β1v2 + 2(1−mS )β2v2 + 2mS Q23β3v2

− 2H2mS Q21β1 − 2H2(1−mS )β2 − 2H2mS Q23β3)

+ w6(2mS Q31β1v3 + 2mS Q32β2v3 + 2(1−mS )β3

− 2H3mS Q31β1 − 2H3mS Q32β2 − 2H3(1−mS )β3) 6= 0
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p < p0

DFE =(10000, 13000, 11000, 0, 0, 0, 0, 0, 0 )
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p = p0
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p > p0

EE = (11.195, 14.708, 12.952, 215.439, 280.068, 236.969, 0.135, 0.097, 0.157)
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n Number of Communities

The Jacobian at the disease-free equilibrium
x0 = (H1,H2, ... ,Hn, 0, ... , 0) is given by

J(x0) =

 J11 0 J13

0 J22 J23

0 J32 J33

 ,
where each Jij block is an n × n matrix, and

J11 = −µUn

J13 = −mSHQβ − (1−mS )Hβ

J22 = −φUn

J23 = mSHQβ + (1−mS )Hβ

J32 =
mI

K
pW−1QT +

1−mI

K
pW−1

J33 = −(µB + l)Un + lW−1PTW
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Math Commandments

1 The disease-free equilibrium loses stability when λ∗(J∗)
crosses zero.

2 The system undergoes a transcritical bifurcation when λ∗(J∗)
crosses zero.

3 The condition det(J∗) = 0 is equivalent to det(Un − G0) = 0.

4 λ = 1 is the dominant eigenvalue of G0.

5 If 0 < λ∗F (V−1F) ≤ 1, then Q = wTV−1x is a Lyapunov
function satisfying Q ′ ≤ 0.

6 If 0 < λ∗F (V−1F) < 1 and the disease-free equilibrium is
globally asymptotically stable in the disease-free system, then
it is a globally asymptotically stable equilibrium of the general
system.



Introduction n=1 n=3 General n What’s Next

Math Commandments Cont.

7 If λ∗(J∗) > 0, then the system has at least one endemic
equilibrium point.

8 The dominant eigenvector of G0, once projected onto the
subspace of infectives, provides us with an effective way to
forecast the geographical spread of the disease.

9 Under some conditions, no periodic orbits can exist (n=1).

10 The system has no Hopf bifurcations at DFE (n=1).
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Our Contribution

• n = 1
• Found correct endemic equilibrium point
• Proved global stability of DFE
• Proved existence of transcritical bifurcation
• (Non)existence of periodic solutions

• n > 1 (Networked Connectivity Model)
• Established a new condition for outbreak of epidemics
• Introduced an appropriate Lyapunov function
• Proved global stability of DFE
• Proved existence of transcritical bifurcation
• Proved existence of endemic equilibrium
• Numerical evidence of homoclinic orbit
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Back to the Future:

• Proving the existence of the homoclinic orbit.

• Conditions for global stability of endemic equilibrium.

• Hopf bifurcation at endemic equilibrium.

• Get help from XPPAUT to find some other possible bifurcations.

• Include seasonal behavior of some diseases.

• Include water treatment/sanitation and vaccination in the model

• Lunch at Union Club: Chicken Parmesan

• Come back to MSU for MAKO conference!!!!
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