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Extending Previous Results

Schwartz’s Proof

Richard Schwartz [4] proved that the pentagram map converges on any convex
polygon.

Definition

The cross ratio of collinear points A,B,C,D ∈ R2 is defined as

χ(A,B,C,D) =
|A− C| · |B − D|
|A− B| · |C − D|

where | · | denotes the Euclidean distance.

If the four points are ordered A,B,C,D, then χ(A,B,C,D) ≥ 1.
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Definition

Let v be a vertex of a polygon Π. The vertex invariant of v, written χ(v) is defined by

χ(v) = χ(A,B,C,D)

where A,B,C, and D are the points defined in the diagram.

The pentagram map preserves the vertex invariants of a pentagon.
The pentagram map preserves the product of the vertex invariants for any
polygon.
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Extending Previous Results

Schwartz’s Proof

Definition

Let A,B ∈ S where S is a convex subset of R2. Let x and y be the intersection points
of the line through A and B with the boundary of S, where the points are ordered
x ,A,B, y . Then the Hilbert Distance between A and B in S is defined as

δS(A,B) = log(χ(x ,A,B, y))
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Extending Previous Results

Schwartz’s Proof

Proof Sketch (by contradiction) :

1 Assume there exists a line L that intersects each Πk in a nontrivial segment.

2 The endpoints of L
⋂

Πk become arbitrarily close to the endpoints of L
⋂

Πk−1 as
k →∞ (Cauchy Sequence w.r.t. Hausdorff Distance).

3 The Hilbert Distance between the endpoints of L
⋂

Πk inside Πk−1 becomes
infinite as k →∞.

4 By the triangle inequality, the Hilbert Perimeter of Πk in Πk−1 becomes infinite as
k →∞.

5 But we can show that the Hilbert Perimeter of Πk in Πk−1 is the log of the product
of the vertex invariants of Πk , so it is invariant with respect to the pentagram map.

6 Contradiction !
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Extending Previous Results

Convergence for a Restricted Class of Pentagons

Let ki = χ(vi ) = |AC||BD|
|AB||CD| >

|AC|
|AB|

=⇒ |AC| < ki |AB|
=⇒ |AD| − |CD| < ki |AB|
=⇒ |AD| < (ki − 1)|AB|+ |AB|+ |CD|
=⇒ |AD| < (ki − 1)|AB|+ |AD| − |BC|
=⇒ |BC| < (ki − 1)|AB|

By symmetry |BC| < (ki − 1)|CD|.
=⇒ 2|BC| < (ki − 1)(|AB|+ |CD|)
=⇒ 2|BC| < (ki − 1)(|AD| − |BC|)
=⇒ |BC| <

(
ki−1
ki +1

)
|AD|
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Extending Previous Results

Convergence for a Restricted Class of Pentagons

This applies for any side of Π1.

P(Π1) <
∑4

i=0

(
ki−1
ki +1

)
di

< 2
(

kmax−1
kmax +1

)
P(Π0)

=⇒ P(Π1)

P(Π0)
< 2

(
kmax−1
kmax +1

)

The ki values are invariant under the
pentagram map.

So P(Πk )

P(Π0)
<
(

2
(

kmax−1
kmax +1

))k

If kmax < 3, then the pentagram
iteration converges to a point and we
have a bound for the rate.
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(
ki−1
ki +1

)
di

< 2
(

kmax−1
kmax +1

)
P(Π0)

=⇒ P(Π1)

P(Π0)
< 2

(
kmax−1
kmax +1

)

The ki values are invariant under the
pentagram map.

So P(Πk )

P(Π0)
<
(

2
(

kmax−1
kmax +1

))k

If kmax < 3, then the pentagram
iteration converges to a point and we
have a bound for the rate.
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Extending Previous Results

A Conjecture

Explorations in geogebra indicate that P(Π1)

P(Π0)
< kmax−1

kmax +1 holds in general for any
polygon, regardless of the number of sides, but we have not been able to prove this.
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Coefficients of Ergodicity

Representation by matrices

The Pentagram map can be represented by an n × n
circulant-patterned matrix.

M =


α0 0 1− α0 0 . . . 0
0 α1 0 1− α1 . . . 0
...

. . .
...

0 1− αn−1 0 0 . . . αn−1


where αi is a proportion along the i th diagonal, or α = c

d

Note : In a regular n-gon
α0 = α1 = . . . = αn−1 =(

sin(π/n)
sin(2π/n)

)2
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Coefficients of Ergodicity

Matrices continued

Multiplying M by a vector of vertices will result in a column vector of the next polygon’s
vertices

vertices of Πk+1 = Mk (vertices of Πk )
vk+1

0
vk+1

1
...

vk+1
n−1

 =


α0 0 1− α0 0 . . . 0
0 α1 0 1− α1 . . . 0
...

. . .
...

0 1− αn−1 0 0 . . . αn−1




vk
0

vk
1
...

vk
n−1



We can then express the vertices of Πk as

Πk = Mk Mk−1 . . .M0Π0

Our project’s main goal is to show that the vertices of Πk converge as k →∞
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Coefficients of Ergodicity

Past Uses

Eric Hintikka [1] used coefficients of ergodicity to prove that any polygon derived
from a series of stochastic circulant-patterned matrices will converge.

Stochastic : All entries in each row will add to one and be non-negative.

Circulant- patterned : Each matrix has the same zero pattern, which repeats
through each row while shifting one column each time.

M =


α0 0 1− α0 0 . . . 0
0 α1 0 1− α1 . . . 0
...

. . .
...

0 1− αn−1 0 0 . . . αn−1


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Coefficients of Ergodicity

Coefficients of Ergodicity

Generally, ergodicity coefficients estimate the rate of convergence for stochastic
matrices [2].
We’ll use some key properties of one coefficient, τ1 :

1 0 ≤ τ1(M) ≤ 1, and 0 = τ1(M)⇔ M is a rank one matrix

2 τ1(M) = 1−
∑n

k=1 min{mik ,mjk}
3 τ1(M1M2) ≤ τ1(M1)τ1(M2)
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Coefficients of Ergodicity

Proving Convergence

Scheme :

For a sequence of k stochastic matrices, divide them into groups of n. Call one
such group Mg .

Each group will multiply to create a positive, stochastic matrix, with
τ1(M) = 1−

∑n
k=1 min{mik ,mjk}. Then we know that τ1 < 1 for each group

specifically, we have τ1(Mg) ≤ 1 − nε(n−1) where ε is the smallest entry in any M matrix
that is greater than zero.

When we multiply each of the groups together, we have

lim
k→∞

τ1(Mk ) ≤ lim
k→∞

(1− nε(n−1))k

Which will equal zero when we have a bound on ε, the smallest possible α value.

Which implies Mk is a rank one matrix, say L.

Thus, the polygon converges, as

lim
k→∞

Πk = LΠ0

Which is simply a point.
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Coefficients of Ergodicity

Limitations

The matrices to represent the pentagram mapping are made up α values that we
have no control over. Eric bounded his matrices with entries (0 < δ < 1

2 ) and
(1− δ) so there was control over the entries in his matrix.

Method only works for polygons with odd number of sides :

M =


α0 0 1− α0 0 0 0
0 α1 0 1− α1 0 0
0 0 α2 0 1− α2 0
0 0 0 α3 0 1− α3

1− α4 0 0 0 α4 0
0 1− α5 0 0 0 α5



Mk =


γ0 0 γ1 0 γ2 2
0 β0 0 β1 0 β2
φ2 0 φ0 0 φ1 0
0 ψ2 0 ψ0 0 ψ1
ρ1 0 ρ2 0 ρ0 0
0 ζ1 0 ζ2 0 ζ0


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Coefficients of Ergodicity

Possibilities

If we consider α in terms of the cross-ratio, we would
have

α =
CD
AD

If a bound exists on this α in terms of k , even a
restricted case of k , then we are able to use the
coefficients of ergodicity
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Set-up

Set-up

Represent the pentagon as a loop :

The five points of pentagon Π0 are represented as (ai , bi ) where i = 0, . . . , 4.

Define a loop f : [0, 1]→ R2 which maps parameter t 7→ (x(t), y(t)).

The x-coordinates in the loop representing the pentagon

x(t) =



(1− 5t)a0 + 5ta1 0 ≤ t ≤ 1/5
(2− 5t)a1 + (5t − 1)a2 1/5 ≤ t ≤ 2/5
(3− 5t)a2 + (5t − 2)a3 2/5 ≤ t ≤ 3/5
(4− 5t)a3 + (5t − 3)a4 3/5 ≤ t ≤ 4/5
(5− 5t)a4 + (5t − 4)a0 4/5 ≤ t ≤ 1

The y-coordinate parametrization has the same form, except all a’s are replaced
with b.
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Set-up

Loop

FIGURE – The parametrization of the pentagon

t (x(t), y(t))
0 , 1 (a0, b0)
1/5 (a1, b1)
2/5 (a2, b2)
3/5 (a3, b3)
4/5 (a4, b4)
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Linear Transformation

Moving Segments

Paramterization of the
first pentagon allows for a
simple linear translation
of segments when
defining the second
pentagon.

Requires all segments to
be defined by a unique
linear transformation.
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Linear Transformation

Matrix Multiplication

Because the transformation is a linear one, we can represent the points through
matrix multiplication.[

x1(t)
y1(t)

]
=

[
A B
C D

] [
x(t)
y(t)

]
i
5
≤ t ≤

(i + 1)

5

Once we know the position of all five points in the original pentagon, we can
determine the intersections of the diagonals using analytic techniques.

So assuming we know (x(t), y(t)) and can find (x1(t), y1(t)), we can solve a
system of equations to determine the matrix :

[
A B
C D

]
=

 a′i bi+1−a′i+1bi
ai bi+1−ai+1bi

ai a
′
i+1−ai+1a′i

ai bi+1−ai+1bi
b′i bi+1−b′i+1bi
ai bi+1−ai+1bi

ai b
′
i+1−ai+1b′i

ai bi+1−ai+1bi


One downside is that a matrix needs to be found for each segment’s
transformation.
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 a′i bi+1−a′i+1bi
ai bi+1−ai+1bi

ai a
′
i+1−ai+1a′i

ai bi+1−ai+1bi
b′i bi+1−b′i+1bi
ai bi+1−ai+1bi

ai b
′
i+1−ai+1b′i

ai bi+1−ai+1bi



One downside is that a matrix needs to be found for each segment’s
transformation.
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Linear Transformation

Finding Convergence

Our goal :

1 Find the matrix
[

A B
C D

]
for each segment’s transformation

2 Show the Perimeter of the new pentagon is smaller due to this transformation.

3 Repeat the process over and over until we get a point.

However, this is a lot of calculation to do by
hand.

BRING IN THE PYTHON !

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 25 / 45



Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Linear Transformation

Finding Convergence

Our goal :

1 Find the matrix
[

A B
C D

]
for each segment’s transformation

2 Show the Perimeter of the new pentagon is smaller due to this transformation.

3 Repeat the process over and over until we get a point.

However, this is a lot of calculation to do by
hand.

BRING IN THE PYTHON !

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 25 / 45



Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Linear Transformation

Finding Convergence

Our goal :

1 Find the matrix
[

A B
C D

]
for each segment’s transformation

2 Show the Perimeter of the new pentagon is smaller due to this transformation.

3 Repeat the process over and over until we get a point.

However, this is a lot of calculation to do by
hand.

BRING IN THE PYTHON !

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 25 / 45



Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Linear Transformation

Finding Convergence

Our goal :

1 Find the matrix
[

A B
C D

]
for each segment’s transformation

2 Show the Perimeter of the new pentagon is smaller due to this transformation.

3 Repeat the process over and over until we get a point.

However, this is a lot of calculation to do by
hand.

BRING IN THE PYTHON !

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 25 / 45



Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Python Program

The Game

Give it 5 points, going in counter-clockwise order. It finds :

The intersection of the diagonals.

The ratio of P(Πk )

P(Πk−1)
, which allows for the easy calculation of P(Πk )

P(Π0)

Draws a picture of the n iterations

Gives the vertices of Πk
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Construction

Two Types of Maps

Can we unify these two maps ?

The midpoint map The pentagram map
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Construction

The Generalized Pentagram Map (GPM)

Let Π be an n-gon with vertices
v0

0 , v
0
1 , . . . , v

0
n−1.

Choose ai , bi ∈ [0, 1] with ai ≤ bi for
i = 0, 1, . . . , n − 1.

Construct points Ai ,Bi such that

ai =
v0

i Ai
v0

i v0
i+1

and bi =
v0

i Bi
v0

i v0
i+1

.

Connect v0
i−1 to Bi and v0

i+2 to Ai .

Call the intersection v1
i .

Apply this process to each edge to form the
vertices of an n-gon T (Π).

Applying this process k times gives us
T k (Π).
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Construction

Representing the Map

A GPM T is uniquely determined by the ai and bi values.

Let f (T ) = (a0, b0, a1, b1, . . . , an−1, bn−1).

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 29 / 45



Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Construction

Representing the Map

A GPM T is uniquely determined by the ai and bi values.

Let f (T ) = (a0, b0, a1, b1, . . . , an−1, bn−1).

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 29 / 45



Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Construction

Representing the Map

A GPM T is uniquely determined by the ai and bi values.

Let f (T ) = (a0, b0, a1, b1, . . . , an−1, bn−1).

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 29 / 45



Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Basic Properties of the Map

Some Examples

f (T ) = (0, 0, . . . , 0) =⇒

T is the identity
map.

f (T ) = (1, 1, . . . , 1) =⇒ T is a relabeling
of the vertices.
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Basic Properties of the Map

Intuition for the Map on Convex Polygons

Gray regions are the overlap of two consecutive vertex triangles.

The vertices of T (Π) lie inside separate gray regions.

Each vertex of T (Π) can lie anywhere in its corresponding region without affecting
the configuration of the other vertices.
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Basic Properties of the Map

Convexity and the GPM

All the maps we’ve looked at previously preserve convexity.

Do all GPMs preserve convexity ?
Unfortunately, no.
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Regular Polygon Case

A Special Type of GPM

Let Π be a regular n-gon and let T be a GPM such that
f (T ) = (m, 1−m,m, 1−m, . . . ,m, 1−m) for some m ∈ [0, 1

2 ].

s′ = s
[
cos

(
π
n

)
− (1− 2m) tan(z) sin

(
π
n

)]
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Regular Polygon Case

A Special Type of GPM

Found using :

Multiple Law of Sines applications

Similar triangles

Symmetry of the regular polygon

P(T k+1(Π))

P(T k (Π))
= cos

(π
n

)
− (1− 2m) sin

(π
n

)
tan(z)

Plugging in m = 0 reduces this equation to P(T k+1(Π))

P(T k (Π))
=

cos( 2π
n )

cos( π
n )

which is what

we obtained previously.

So T is a convexity preserving GPM on regular polygons and T k (Π) converges to
a point.
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Regular Polygon Case

A Special Type of GPM

What makes this map important ?

It is a nontrivial convexity-preserving GPM on regular polygons.

This very "normal" type of GPM preserves regularity and decreases side length in
a predictable way.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 36 / 45



Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Regular Polygon Case

A Special Type of GPM

What makes this map important ?

It is a nontrivial convexity-preserving GPM on regular polygons.

This very "normal" type of GPM preserves regularity and decreases side length in
a predictable way.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 36 / 45



Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Regular Polygon Case

A Special Type of GPM

What makes this map important ?

It is a nontrivial convexity-preserving GPM on regular polygons.

This very "normal" type of GPM preserves regularity and decreases side length in
a predictable way.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 36 / 45



Introduction Ergodicity Parametrization Unifying the Maps Conclusion

General Polygons

GPM Properties

Proposition

Let T1 and T2 be GPMs on a convex n-gon Π such that
f (T1) = (a0, b0, . . . , an−1, bn−1) and f (T2) = (x , b0, . . . , an−1, bn−1) where a0 ≤ x .
Then A(T1(Π)) ≤ A(T2(Π)).

T2(Π) is convex at vertex 0. T2(Π) is not convex at vertex 0
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General Polygons

GPM Properties

Corollary

Let TP be the pentagram map and T be any other GPM on a convex polygon Π. Then
A(TP(Π)) < A(T (Π)).

The process seen in the previous proposition terminates with the pentagram map.

Recall that last time we proved
A(T k+1

P (Π))

A(T k
P (Π))

< 14
15 where Π is a pentagon.

We can use this corollary to obtain a better bound on the rate of area reduction for
the pentagram map on pentagons.
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The Pentagon Case

A Better Bound

The following proposition is due to Dan Ismailescu et al. [3].

Proposition

Let Tm be a GPM on a convex pentagon Π such that f (Tm) = (m,m, . . . ,m). Then
A(T k+1

m (Π))

A(T k
m(Π))

< 1−m(1−m).

By the proposition on the previous slide,
A(T k+1

P (Π))

A(T k
P (Π))

<
A(Tm(T k

P (Π)))

A(T k
P (Π))

< 1−m(1−m).

On the interval [0, 1], the function g(x) = 1− x(1− x) is attains a minimum of 3
4

at x = 1
2 .

So
A(T k+1

P (Π))

A(T k
P (Π))

< 3
4 =⇒ A(T k

P (Π))

A(Π)
<
(

3
4

)k
.
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The Pentagon Case

A More General Result

What else can we say about different types of GPMs on convex pentagons ?

Proposition

Let T1 and T2 be GPMs on a convex n-gon Π such that
f (T1) = (a0, b0, . . . , an−1, bn−1) and f (T2) = (x , b0, . . . , an−1, bn−1) where a0 ≤ x .
Then A(T2(Π)) ≤ A(T1(Π)).

Proposition

Let Π be a convex pentagon and let T be a convexity preserving GPM on Π such that
f (T ) = (a0, b0, a1, b1, . . . , a4, b4) with ai ≤ m ≤ bi for i = 0, 1, . . . , 4. Then T k (Π)
shrinks to a region of zero area. In particular,

A(T k (Π))

A(Π)
≤ (1−m(1−m))k

Proof :

Apply the top proposition to each coordinate of f (T ).
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The Pentagon Case

Review of GPM Results

We proved convergence to a point for a special type of GPM applied to regular
polygons.

We obtained a better bound of the rate of area decrease for the pentagram map.

We proved that a restricted class of GPMs applied to a convex pentagon shrinks
to a region of zero area. Furthermore, we provided a bound on the rate of area
decrease.
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The Pentagon Case

Future GPM Directions

Given a polygon Π, find a sufficient condition for a GPM to be a
convexity-preserving map on Π.

Investigate different types of GPMs.

Study GPMs on polygons with n > 5 vertices.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 42 / 45



Introduction Ergodicity Parametrization Unifying the Maps Conclusion

The Pentagon Case

Future GPM Directions

Given a polygon Π, find a sufficient condition for a GPM to be a
convexity-preserving map on Π.

Investigate different types of GPMs.

Study GPMs on polygons with n > 5 vertices.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 42 / 45



Introduction Ergodicity Parametrization Unifying the Maps Conclusion

The Pentagon Case

Future GPM Directions

Given a polygon Π, find a sufficient condition for a GPM to be a
convexity-preserving map on Π.

Investigate different types of GPMs.

Study GPMs on polygons with n > 5 vertices.

H. Dinkins, E. Pavlechko, K. Williams MSU The Pentagram Map July 28th, 2016 42 / 45



Introduction Ergodicity Parametrization Unifying the Maps Conclusion

Overall Results

Generalized the iteration procedure.

Improved the rate of convergence for Area to 3
4 .

Made a program to assist in computation of the pentagram map.

Set up methods for simpler geometric proofs for convergence.

Worked with matrices to represent convergence.

Built upon previously established results by Richard Schwartz.

Proved convergence to a point for a restricted class of pentagons.
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