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Additive combinatorics

» Additive Combinatorics is a rich and active field of research!
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Additive combinatorics

» Additive Combinatorics is a rich and active field of research!
» Sums and products (Erdés, Szemerédi)
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Additive combinatorics

» Additive Combinatorics is a rich and active field of research!

» Sums and products (Erdés, Szemerédi)
» Arithmetic progressions (Roth, Green-Tao)
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Sum and product sets

» sumset A+ B={a+b:ac A be B}
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Sum and product sets

» sumset A+ B={a+b:ac A be B}
» product set AB={ab:ac A bec B}
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Sum and product sets

» sumset A+ B={a+b:ac A be B}
» product set AB={ab:ac A bec B}
» eg. A={1,2,3}, B={3,10}
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Sum and product sets

v

sumset A+ B={a+b:ac A bec B}
product set AB = {ab:ac A, bc B}
eg. A=1{1,2,3}, B={3,10}

A+ B ={4,56,11,12,13}

v

v

v

Karissa, Katie, Rafael - Missouri State University, Springfield Polychromatic Triples



Sum and product sets

v

sumset A+ B={a+b:ac A bec B}
product set AB = {ab:ac A, bc B}
eg. A=1{1,2,3}, B={3,10}

A+ B ={4,56,11,12,13}

AB = {3,6,9,10, 20,30}

v

v

v

v
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Sums and products conjecture

» Erdés and Szemerédi conjectured that either A+ A or the AA
should be large compared to the size of A.
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Sums and products conjecture

» Erdés and Szemerédi conjectured that either A+ A or the AA
should be large compared to the size of A.

» max{|A + Al|,|AA|} > |A|*, for some exponent, x > 1.
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Sums and products conjecture

» Erdés and Szemerédi conjectured that either A+ A or the AA
should be large compared to the size of A.

» max{|A + Al|,|AA|} > |A|*, for some exponent, x > 1.

» The conjecture is that x should be close to 2.

Karissa, Katie, Rafael - Missouri State University, Springfield Polychromatic Triples



Sums and products conjecture

» Erdés and Szemerédi conjectured that either A+ A or the AA
should be large compared to the size of A.

» max{|A + Al|,|AA|} > |A|*, for some exponent, x > 1.
» The conjecture is that x should be close to 2.

> Elekes - %, Solymosi - %, Konyagin-Shkredov have the record
with % + ¢ for some ¢ > 0
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Arithmetic progressions

> Let [a..b] denote the set of integers, x, such that a < x < b.
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Arithmetic progressions

> Let [a..b] denote the set of integers, x, such that a < x < b.

> A set of the form {ag + dt : t € [0..(n — 1)]} is called an
arithmetic progression of length n and step size d # 0.
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Arithmetic progressions

> Let [a..b] denote the set of integers, x, such that a < x < b.

> A set of the form {ag + dt : t € [0..(n — 1)]} is called an
arithmetic progression of length n and step size d # 0.

> eg. {4,6,8,10,12,14} = {442t : t € [0..5]}
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Arithmetic progressions

> Let [a..b] denote the set of integers, x, such that a < x < b.

> A set of the form {ag + dt : t € [0..(n — 1)]} is called an
arithmetic progression of length n and step size d # 0.

» eg. {4,6,8,10,12,14} = {4 +2t:t € [0..5]}

» Szemerédi's Theorem says that if we have a dense enough

subset of the integers, then it has arbitrarily long arithmetic
progressions.
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Arithmetic progressions

Let [a..b] denote the set of integers, x, such that a < x < b.

A set of the form {ag + dt : t € [0..(n — 1)]} is called an
arithmetic progression of length n and step size d # 0.

e.g. {4,6,8,10,12,14} = {442t : t € [0..5]}
Szemerédi's Theorem says that if we have a dense enough

subset of the integers, then it has arbitrarily long arithmetic
progressions.

Green-Tao proved that there are aribtrarily long arithmetic
progressions of primes. Their theorem says, for every natural
number, k, there exists arithmetic progressions of primes with
k terms.

Karissa, Katie,
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Ramsey theory

» Ramsey theory looks for patterns in partitions (colorings)
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Ramsey theory

» Ramsey theory looks for patterns in partitions (colorings)

» Schur’'s Theorem - For any partition of the positive integers
into a finite number of parts, one of the parts contains

X7y7X+.y
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Ramsey theory

» Ramsey theory looks for patterns in partitions (colorings)

» Schur’'s Theorem - For any partition of the positive integers
into a finite number of parts, one of the parts contains
X, Y, x+Yy.

» eg. [1..10] ={1,3,5,7,9} U{2,4,6,8,10},2 + 6 = 8.
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Ramsey theory

» Ramsey theory looks for patterns in partitions (colorings)

» Schur’'s Theorem - For any partition of the positive integers
into a finite number of parts, one of the parts contains
X, Y, x+Yy.

» eg. [1..10] ={1,3,5,7,9} U{2,4,6,8,10},2 + 6 = 8.

» Open Problems In Partition Regularity (Hindman, Leader,
Strauss), monochromatic (x,y,x + y, xy) in N.
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Ramsey theory

» Ramsey theory looks for patterns in partitions (colorings)

» Schur’'s Theorem - For any partition of the positive integers
into a finite number of parts, one of the parts contains
X, Y, x+Yy.

» eg. [1..10] ={1,3,5,7,9} U{2,4,6,8,10},2 + 6 = 8.

» Open Problems In Partition Regularity (Hindman, Leader,
Strauss), monochromatic (x,y,x + y, xy) in N.

» Monochromatic Sums and Products (Green, Sanders),
monochromatic (x,y,x + y, xy) in finite fields.
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Polychromatic triples

» Partition Zg into k sets (called color classes), A;, Ay, ..., Ax,
of (roughly) equal size. Such a partition is called a coloring.
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Polychromatic triples

» Partition Zg into k sets (called color classes), A;, Ay, ..., Ax,
of (roughly) equal size. Such a partition is called a coloring.

» A polychromatic triple is a triple, (x,y,x + y) where
x € Ai,y € Aj, and x +y € Ay, for i, j, and h distinct.
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Polychromatic triples

» Partition Zg into k sets (called color classes), A;, Ay, ..., Ax,
of (roughly) equal size. Such a partition is called a coloring.

» A polychromatic triple is a triple, (x,y,x + y) where
x € Ai,y € Aj, and x +y € Ay, for i, j, and h distinct.

» This is different from the monochromatic triples and
quadruples before, where all of the elements would all come
from the same set, A;.
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Polychromatic triples

» Partition Zg into k sets (called color classes), A;, Ay, ..., Ax,
of (roughly) equal size. Such a partition is called a coloring.

» A polychromatic triple is a triple, (x,y,x + y) where
x € Ai,y € Aj, and x +y € Ay, for i, j, and h distinct.

» This is different from the monochromatic triples and
quadruples before, where all of the elements would all come
from the same set, A;.

> Note that this doesn't always happen. No polychromatic
quadruples can exist in Z4,), where the color classes are
Aj = {x € Z4n) : x =j (mod 4)}.
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Additive triples

» Theorem 1: If k > 3, for a large prime, p, then any
k-coloring of Z,, where each color class has roughly the same
size (either [2] or | 2] elements), must admit a
polychromatic triple of the form (x,y,x + y).
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Additive triples

» Theorem 1: If k > 3, for a large prime, p, then any
k-coloring of Z,, where each color class has roughly the same
size (either [2] or | 2] elements), must admit a
polychromatic triple of the form (x,y,x + y).

» When working in Zg, for g not necessarily prime, our results

weaken.
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Additive triples

» Theorem 1: If k > 3, for a large prime, p, then any
k-coloring of Z,, where each color class has roughly the same
size (either [2] or | 2] elements), must admit a

polychromatic triple of the form (x,y,x + y).

» When working in Zg, for g not necessarily prime, our results
weaken.

» Theorem 2: There exists an additive polychromatic triple of
the form (x, y,x + y) in Zg for k-coloring whenever we have
k > q%“, for every € > 0.
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Multiplicative triples

» As a corollary to Theorem 2, we also have the existence of
multiplicative polychromatic triples in Z,.
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Multiplicative triples

» As a corollary to Theorem 2, we also have the existence of
multiplicative polychromatic triples in Z,.

» Corollary 1: There exists a multiplicative polychromatic triple
of the form (x, y, xy) in Z, for k-coloring whenever we have
k > q%“, for every € > 0.
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Multiplicative triples

> A group is called cyclic if there exists an element, g € Z7,
called a generator, such that every element in the group can
be written as g/, for some j € N.
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Multiplicative triples

> A group is called cyclic if there exists an element, g € Z7,
called a generator, such that every element in the group can
be written as g/, for some j € N.

» To prove that we have multiplicative polychromatic triples,
recall that Z, is a field, so its multiplicative group, (Zj, ),
must be cyclic.
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Multiplicative triples

> A group is called cyclic if there exists an element, g € Z7,
called a generator, such that every element in the group can
be written as g/, for some j € N.

» To prove that we have multiplicative polychromatic triples,
recall that Z, is a field, so its multiplicative group, (Zj, ),
must be cyclic.

» Every pair of elements, x,y € Zj, can be written in terms of a
generator, g, as x = g/ and y = g.
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Multiplicative triples

> A group is called cyclic if there exists an element, g € Z7,
called a generator, such that every element in the group can
be written as g/, for some j € N.

» To prove that we have multiplicative polychromatic triples,
recall that Z, is a field, so its multiplicative group, (Zj, ),
must be cyclic.

» Every pair of elements, x,y € Zj, can be written in terms of a
generator, g, as x = g/ and y = g.

» So products look like xy = g/gh = g/tk.
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Multiplicative triples

> A group is called cyclic if there exists an element, g € Z7,
called a generator, such that every element in the group can
be written as g/, for some j € N.

» To prove that we have multiplicative polychromatic triples,
recall that Z, is a field, so its multiplicative group, (Zj, ),
must be cyclic.

» Every pair of elements, x,y € Zj, can be written in terms of a
generator, g, as x = g/ and y = g.

» So products look like xy = g/gh = g/tk.

» Therefore, the behavior of nonzero products in Z, is
isomorphic to the behavior of sums in Zg, where g = (p — 1).
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Multiplicative triples

> A group is called cyclic if there exists an element, g € Z7,
called a generator, such that every element in the group can
be written as g/, for some j € N.

» To prove that we have multiplicative polychromatic triples,
recall that Z, is a field, so its multiplicative group, (Zj, ),
must be cyclic.

» Every pair of elements, x,y € Zj, can be written in terms of a
generator, g, as x = g/ and y = g.

» So products look like xy = g/gh = g/tk.

» Therefore, the behavior of nonzero products in Z, is
isomorphic to the behavior of sums in Zg, where g = (p — 1).

» So we apply Theorem 2 to the sets of exponents of g that
correspond to each color class.
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» We introduce the notation AéeB, to mean that A is a subset
of B, except for possibly a small exceptional set. That is to
say, that A is essentially a subset of B. More precisely, for
some small, specified constant,

AC.B < |A\B|<e.
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» We introduce the notation AéeB, to mean that A is a subset
of B, except for possibly a small exceptional set. That is to
say, that A is essentially a subset of B. More precisely, for
some small, specified constant,

AC.B < |A\B|<e.

» eg {1,2,3,4,5}C{1,2,3,4}.
g{7777 1144y 9
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» We introduce the notation AéeB, to mean that A is a subset
of B, except for possibly a small exceptional set. That is to
say, that A is essentially a subset of B. More precisely, for
some small, specified constant,

AC.B < |A\B|<e.

» eg {1,2,3,4,51C,{1,2,3,4}.
> eg {1,2,3,41C;{1,2,3,4}.
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» We introduce the notation AéeB, to mean that A is a subset
of B, except for possibly a small exceptional set. That is to
say, that A is essentially a subset of B. More precisely, for
some small, specified constant,

AC.B < |A\B|<e.

» eg {1,2,3,4,51C,{1,2,3,4}.
> eg {1,2,3,41C;{1,2,3,4}.
> eg {1,2,3,41C,{1,2,3,4,5,6,7,8}.

Karissa, Katie, Rafael - Missouri State University, Springfield Polychromatic Triples



» Similarly, we will also use the following (asymmetric!) symbol,
to say that A is essentially equal to B.

AZ.B,

which means that AC B, and |B\ A| < e.
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» Similarly, we will also use the following (asymmetric!) symbol,
to say that A is essentially equal to B.

AZ.B,

which means that AC B, and |B\ A| < e.
> eg. {1723374}21{172735475}‘
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» Similarly, we will also use the following (asymmetric!) symbol,
to say that A is essentially equal to B.

AZ.B,

which means that AC B, and |B\ A| < e.
> e.g. {1723374}21{172735475}‘
> eg {1,2,3,4,5}£,{1,2,3,4}.
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» Similarly, we will also use the following (asymmetric!) symbol,
to say that A is essentially equal to B.

A=.B,
which means that AC B, and |B\ A| < e.
> eg. {1723374}21{172737475}‘

> eg {1,2,3,4,5}£,{1,2,3,4}.
» eg. {1,2,3}=:{1,2,3,4,5}.
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Proof of Theorem 1 (part 1)
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Proof of Theorem 1

» Theorem 1 is a corollary of the following technical result, and
an inclusion-exclusion argument that we postpone until later.
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Proof of Theorem 1

» Theorem 1 is a corollary of the following technical result, and
an inclusion-exclusion argument that we postpone until later.

» Lemma: If pis a large prime, and A, B, and C are disjoint
subsets of Zj, each of size n or n+ 1, with £ +1 > n > 10,
and possibly have the same size, then there exists a triple,
(x,y,x +y), where no two of the elements come from the
same set.

Karissa, Katie, Rafael - Missouri State University, Springfield Polychromatic Triples



Proof of Theorem 1

» Theorem 1 is a corollary of the following technical result, and
an inclusion-exclusion argument that we postpone until later.

» Lemma: If pis a large prime, and A, B, and C are disjoint
subsets of Zj, each of size n or n+ 1, with £ +1 > n > 10,
and possibly have the same size, then there exists a triple,
(x,y,x +y), where no two of the elements come from the
same set.

> We will prove the lemma by showing that we cannot have
A+ B CAUB and A+ C C AU C simultaneously, which will
mean that we have a polychromatic triple.
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Proof of Theorem 1 (part 1)

» Without loss of generality, we will assume that |A| = n. Let
|B| = m, which is either n or n+1, and let |C| =/, which is
also either nor n+ 1.
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Proof of Theorem 1 (part 1)

Karissa, Katie,

Without loss of generality, we will assume that |A| = n. Let
|B| = m, which is either n or n+1, and let |C| =/, which is
also either nor n+ 1.

Cauchy-Davenport Theorem: For additive subsets of Z,, A
and B: |A+ B| > min{|A| + |B| — 1, p}.
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Proof of Theorem 1 (part 1)

> In our case, we will have that |A+ B| > |A| +|B| — 1, by
Cauchy-Davenport.

Karissa, Katie, Rafael - Missouri State University, Springfield Polychromatic Triples



Proof of Theorem 1 (part 1)

> In our case, we will have that |A+ B| > |A| +|B| — 1, by
Cauchy-Davenport.

» If [A+ B| > |A| + |BJ, then A+ B¢ AU B, and we have a
polychromatic triple. So we can assume that one of the
following two theorems hold, giving us information on the
structure of A and B:
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Proof of Theorem 1 (part 1)

> In our case, we will have that |A+ B| > |A| +|B| — 1, by
Cauchy-Davenport.

» If [A+ B| > |A| + |BJ, then A+ B¢ AU B, and we have a
polychromatic triple. So we can assume that one of the
following two theorems hold, giving us information on the
structure of A and B:

» Vosper's Theorem: If |A+ B| = |A| + |B| — 1 then A and B
are arithmetic progressions with the same step size.
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Proof of Theorem 1 (part 1)

> In our case, we will have that |A+ B| > |A| +|B| — 1, by
Cauchy-Davenport.

» If [A+ B| > |A| + |BJ, then A+ B¢ AU B, and we have a
polychromatic triple. So we can assume that one of the
following two theorems hold, giving us information on the
structure of A and B:

» Vosper's Theorem: If |A+ B| = |A| + |B| — 1 then A and B
are arithmetic progressions with the same step size.

» Hamidoune-Rgdseth Theorem: If |A+ B| = |A| + |B| then
A and B are =; arithmetic progressions with the same step
size.
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Proof of Theorem 1 (part 1)

» Cauchy-Davenport guarantees that each sum set must be at
least a minimum size, which puts us into two cases:
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Proof of Theorem 1 (part 1)

» Cauchy-Davenport guarantees that each sum set must be at
least a minimum size, which puts us into two cases:

» |A+ B| = |A]+ |B| — 1 (Vosper)
|A+ B| = |A| + |B| (Hamidoune-Rgdseth)
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Proof of Theorem 1 (part 1)

» Cauchy-Davenport guarantees that each sum set must be at
least a minimum size, which puts us into two cases:

» |A+ B| = |A]+ |B| — 1 (Vosper)
|A+ B| = |A| + |B| (Hamidoune-Rgdseth)

> In either the case of Vosper's Theorem or the
Hamidoune-Rgdseth Theorem, we will have that our color
classes must essentially be arithmetic progressions.
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Proof of Theorem 1 (part 1)

> In the case that |A+ B| = |A| + |B| — 1, we write down what
the elements of each arithmetic progression must look like and
make some reductions.
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Proof of Theorem 1 (part 1)

> In the case that |A+ B| = |A| + |B| — 1, we write down what
the elements of each arithmetic progression must look like and
make some reductions.

» A={ap+su:se€[0..(n—1)]},B={byp+su:s e [0..(m—1)]}.
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Proof of Theorem 1 (part 1)

> In the case that |A+ B| = |A| + |B| — 1, we write down what
the elements of each arithmetic progression must look like and
make some reductions.

» A={ap+su:se€[0..(n—1)]},B={byp+su:s e [0..(m—1)]}.

» A+ B={ap+ by +su:se[0.(n+m—2)]}
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Proof of Theorem 1 (part 1)

> If we have |A+ B| = |A| + |B|, then A and B are arithmetic
progressions, but missing one element.
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Proof of Theorem 1 (part 1)

> If we have |A+ B| = |A| + |B|, then A and B are arithmetic
progressions, but missing one element.

» |n either case, we will have
A=1{ap + su:s € [0..n]} and B=1{bg + su : s € [0..m]}.
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Proof of Theorem 1 (part 1)

> If we have |A+ B| = |A| + |B|, then A and B are arithmetic
progressions, but missing one element.

» |n either case, we will have

A=1{ap + su:s € [0..n]} and B=1{bg + su : s € [0..m]}.
» The sumset will be of the form

A+ B=1{ap+ bg+su:se[0.(n+m—1)]}.
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Proof of Theorem 1 (part 1)

> If we have |A+ B| = |A| + |B|, then A and B are arithmetic
progressions, but missing one element.

» |n either case, we will have
A=1{ap + su:s € [0..n]} and B=1{bg + su : s € [0..m]}.

> The sumset will be of the form
A+ B=1{ap+ bg+su:se[0.(n+m—1)]}.

» The subscript of 1 follows from the fact that we are
guaranteed that A + B can be missing no more than one
element from the set {ag + by + su: s € [0..(n+ m — 1)]}, by
Cauchy-Davenport.
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Proof of Theorem 1 (part 1)

» We can repeat the same process for A and C.
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Proof of Theorem 1 (part 1)

» We can repeat the same process for A and C.
» So, A=1{ag + su:s € [0..n]} and C=1{co + su:s e [0..[]}.
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Proof of Theorem 1 (part 1)

» We can repeat the same process for A and C.
» So, A=1{ag + su:s € [0..n]} and C=1{co + su:s e [0..[]}.
> The sumset is of the form

A+ C={ao+co+su:se[0..(n+1—-1)]}.
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Proof of Theorem 1 (part 1)

» Without loss of generality, we can assume that v = 1. If
u # 1, divide everything by u, and we preserve all of the same
arithmetic data. We know u # 0, as it is the step size of an
arithmetic progression.

Karissa, Katie, Rafael - Missouri State University, Springfield Polychromatic Triples



Proof of Theorem 1 (part 1)

» Without loss of generality, we can assume that v = 1. If
u # 1, divide everything by u, and we preserve all of the same
arithmetic data. We know u # 0, as it is the step size of an
arithmetic progression.

> Now, we have sets of the following forms:
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Proof of Theorem 1 (part 1)

» Without loss of generality, we can assume that v = 1. If
u # 1, divide everything by u, and we preserve all of the same
arithmetic data. We know u # 0, as it is the step size of an
arithmetic progression.

> Now, we have sets of the following forms:

> Aél[ao..(ao + n)]
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Proof of Theorem 1 (part 1)

» Without loss of generality, we can assume that v = 1. If
u # 1, divide everything by u, and we preserve all of the same
arithmetic data. We know u # 0, as it is the step size of an
arithmetic progression.

> Now, we have sets of the following forms:
> Aél[ao..(ao + n)]
> Bél[bo..(bo + m)]
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Proof of Theorem 1 (part 1)

» Without loss of generality, we can assume that v = 1. If
u # 1, divide everything by u, and we preserve all of the same
arithmetic data. We know u # 0, as it is the step size of an
arithmetic progression.

> Now, we have sets of the following forms:
» A=1lag..(ap + n)]

» B=1[by..(bo + m)]

» C=1[cp..(co + /)]
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Proof of Theorem 1 (part 1)

» Without loss of generality, we can assume that v = 1. If
u # 1, divide everything by u, and we preserve all of the same
arithmetic data. We know u # 0, as it is the step size of an
arithmetic progression.

> Now, we have sets of the following forms:
» A=1lag..(ap + n)]

» B=1[by..(bo + m)]

» C=1[cp..(co + /)]

» Our sumsets are now of the following form

A+ B=1{ap+ by +s:s€[0..(n+m—1)]} and
A+ C=1{ao+co+s:se[0..(n+1—1)]}.
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Proof of Theorem 1 (part 1)

» By way of contradiction, we will assume that we do not have
a polychromatic triple of the form (x, y,x + y).
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Proof of Theorem 1 (part 1)

» By way of contradiction, we will assume that we do not have
a polychromatic triple of the form (x, y,x + y).

» This implies that every sum of elements in A and B ends up
back in either A or B.
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Proof of Theorem 1 (part 1)

» By way of contradiction, we will assume that we do not have
a polychromatic triple of the form (x, y,x + y).

» This implies that every sum of elements in A and B ends up
back in either A or B.

» The same must then be true for A and C.
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Proof of Theorem 1 (part 1)

v

By way of contradiction, we will assume that we do not have
a polychromatic triple of the form (x, y,x + y).

v

This implies that every sum of elements in A and B ends up
back in either A or B.

The same must then be true for A and C.
So we have that (A+ B) C(AUB) and (A+C) C (AUC).

v

v
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Proof of Theorem 1 (part 1)

» Claim: (AU B)Cyo[(—m)..m].
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Proof of Theorem 1 (part 1)

» Claim: (AU B)Cyo[(—m)..m].
» Recall that our sets are of the forms
A=1{ao+s:s € [0..n]}, and B=1{bg + s :s € [0..m]}.
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Proof of Theorem 1 (part 1)

» Claim: (AU B)Cyo[(—m)..m].

> Recall that our sets are of the forms
A=1{ao+s:s € [0..n]}, and B=1{bg + s :s € [0..m]}.

» As A is missing one element and (A + B) is missing no more
than one element, then their intersection is missing no more
than two elements.
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Proof of Theorem 1 (part 1)

» Claim: (AU B)Cyo[(—m)..m].
» Recall that our sets are of the forms
A=1{ao+s:s € [0..n]}, and B=1{bg + s :s € [0..m]}.

» As A is missing one element and (A + B) is missing no more
than one element, then their intersection is missing no more
than two elements.

> So, AN (A+ B)=,

{ao+s:s€[0..n]} N{ao + bo+s:s€[0..(n+ m)]}.
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Proof of Theorem 1 (part 1)

» Claim: (AU B)Cyo[(—m)..m].

> Recall that our sets are of the forms
A=1{ao+s:s € [0..n]}, and B=1{bg + s :s € [0..m]}.

» As A is missing one element and (A + B) is missing no more
than one element, then their intersection is missing no more
than two elements.

» So, AN(A+ B)=,
{ao+s:s€[0..n]} N{ao + bo+s:s€[0..(n+ m)]}.

» If we subtract ag from both sets, we get
(A - ao) N (A + B — 30)22

{s:se€[0..n]} N{bp+s:se[0.(n+ m)]}.
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Proof of Theorem 1 (part 1)

» Since (A+ B) C (AUB), and |AUB| = n+ m, and
|A+ B| > n+m—1, we know that |[AN(A+ B)| > n—1.
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Proof of Theorem 1 (part 1)

» Since (A+ B) C (AUB), and |AUB| = n+ m, and
|A+ B| > n+m—1, we know that |[AN(A+ B)| > n—1.
» Combining this with (A —ag) N(A+ B — ag)=2{s: s €
[0..n]} N {bo + s :5s € [0..(n+ m)]} and the fact that
|(A — ag)| = n tells us that [0..n]Cy[bg..(bo + n + m)].
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Proof of Theorem 1 (part 1)

» Since (A+ B) C (AUB), and |AUB| = n+ m, and
|A+ B| > n+m—1, we know that |[AN(A+ B)| > n—1.

» Combining this with (A —ap) N (A+ B —ap)=2{s:s €
[0..n]} N {bo + s :5s € [0..(n+ m)]} and the fact that
|(A — ag)| = n tells us that [0..n]Cy[bg..(bo + n + m)].

» Note that [0..n] cannot be somewhere in the middle of
[b..(bo + n+ m)].
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Proof of Theorem 1 (part 1)

v

Since (A+B) C(AUB), and |JAUB|=n+m, and
|[A+ B| > n+ m—1, we know that |[AN(A+ B)| >n—1.
Combining this with (A —ag) N (A+ B —ag)=2{s:s €
[0..n]} N {bo + s :5s € [0..(n+ m)]} and the fact that

|(A — ag)| = n tells us that [0..n]Cy[bg..(bo + n + m)].
Note that [0..n] cannot be somewhere in the middle of
[b..(bo + n+ m)].

So (A — ap) is either the first or second half of

[bo..(bo + n+ m)] and (B — ap) is the rest.

v

v

v
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Proof of Theorem 1 (part 1)

A_a 0 B'a 0

WWJ

<p/3 <p/3 <p/3

As each subset of Zj, is of size less than p/3, neither set can wrap all the
way around to border both sides of the other. This figure ignores the
possible exceptional elements.
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Proof of Theorem 1 (part 1)

» Since (A — ag)=1][0..n], we have that either
(1) (B — ao)=a[bo..(bo + m)] (left half),
or

(if) (B — ao)=a[(bo + n)..(bo + n+ m)] (right half).
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Proof of Theorem 1 (part 1)

> Since (A — a9)=1[0..n], we have that either
(i) (B — a0)=4[bo..(bo + m)] (left half),
or
(i)) (B — a0)=4[(bo + n)..(bo + n+ m)] (right half).

> In case (i), (A— ag)=a[(bo + m+1)..(bo + n+ m)].
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Proof of Theorem 1 (part 1)

> Since (A — a9)=1[0..n], we have that either
(i) (B — a0)=4[bo..(bo + m)] (left half),
or
(i)) (B — a0)=4[(bo + n)..(bo + n+ m)] (right half).

> In case (i), (A— ag)=a[(bo + m+1)..(bo + n+ m)].
» But (A - 30)21[0..n]

Karissa, Katie, Rafael - Missouri State University, Springfield Polychromatic Triples



Proof of Theorem 1 (part 1)

Since (A — a9)=1[0..n], we have that either

v

(1) (B — ag)=a[bo..(bo + m)] (left half),
or

(if) (B — ao)=a[(bo + n)..(bo + n+ m)] (right half).

v

In case (i), (A— ag)=a[(bo + m+1)..(bo + n+ m)].
But (A - 30)21[0..n]
So, by € [(—m —5)..(—m +5)] and by € [(—5)..5].

v

v
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Proof of Theorem 1 (part 1)

> In case (ii), (A — ao)=a[bo..(bo + n)].
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Proof of Theorem 1 (part 1)

> In case (ii), (A — ao)=a[bo..(bo + n)].
» But again, (A — a9)=1]0..n]
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Proof of Theorem 1 (part 1)

> In case (ii), (A — ao)=a[bo..(bo + n)].
» But again, (A — a9)=1]0..n]
» So, by € [(—5)..5], and by € [(m — 5)..(m + 5)].
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Proof of Theorem 1 (part 1)

> In case (ii), (A — ao)=a[bo..(bo + n)].

» But again, (A — a9)=1]0..n]

» So, by € [(—5)..5], and by € [(m —5)..(m+ 5)].

> In either case, we can see that the union of A and B must
then be, essentially, [(—m)..m], with at most five exceptions

from each of A and B, giving us the desired claim, that
AU Bélo[(—m)..m].
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Proof of Theorem 1 (part 1)

> In case (ii), (A — ao)=a[bo..(bo + n)].

» But again, (A — a9)=1]0..n]

» So, by € [(—5)..5], and by € [(m —5)..(m+ 5)].

> In either case, we can see that the union of A and B must
then be, essentially, [(—m)..m], with at most five exceptions
from each of A and B, giving us the desired claim, that
AU 8210[(—m)..m].

» But this reasoning also applies with A and C, meaning that
three disjoint sets of size n have to be contained in an interval
of about 2n integers, with no more than 4 exceptional
elements per set. This is a contradiction for n > 12.
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Proof of Theorem 2
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Proof of Theorem 2

» Theorem 2: There exists an additive polychromatic triple of
the form (x, y,x 4+ y) in Zq (g may be composite!) for
k-coloring whenever we have k > q%+8, for any ¢ > 0.
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Proof of Theorem 2

» Theorem 2: There exists an additive polychromatic triple of
the form (x, y,x 4+ y) in Zq (g may be composite!) for

lie

2

k-coloring whenever we have k > g2™°, for any € > 0.

» To see this, suppose that we have a color class, A, such that
A={a1,...,a,}, where each element in A can be written as
aj =X+ aj
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Proof of Theorem 2

» Theorem 2: There exists an additive polychromatic triple of
the form (x, y,x 4+ y) in Zq (g may be composite!) for
k-coloring whenever we have k > q%+8, for any ¢ > 0.

» To see this, suppose that we have a color class, A, such that
A={a1,...,a,}, where each element in A can be written as
aj =X+ aj

> Now, for any fixed a;, there are n choices of j such that
X+ aj = a;.
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Proof of Theorem 2

» Theorem 2: There exists an additive polychromatic triple of
the form (x, y,x 4+ y) in Zq (g may be composite!) for
k-coloring whenever we have k > q%+5, for any ¢ > 0.

» To see this, suppose that we have a color class, A, such that
A={a1,...,a,}, where each element in A can be written as
aj =X+ aj

> Now, for any fixed a;, there are n choices of j such that
X+ aj = a;.

> Rearranging, we get that there exist n values of (a; — a;), for
a fixed i due to the n choices of j.

Karissa, Katie, Rafael - Missouri State University, Springfield Polychromatic Triples



Proof of Theorem 2

» Theorem 2: There exists an additive polychromatic triple of
the form (x, y,x 4+ y) in Zq (g may be composite!) for

lie

2

k-coloring whenever we have k > g2™°, for any € > 0.

» To see this, suppose that we have a color class, A, such that
A={a1,...,a,}, where each element in A can be written as
aj =X+ aj

> Now, for any fixed a;, there are n choices of j such that
X+ aj = aj.

> Rearranging, we get that there exist n values of (a; — a;), for
a fixed i due to the n choices of j.

» Since there are n choices for a;, the total number of elements
that could be added to A to get A is < n?.
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Proof of Theorem 2

> Set [Zg \ Al < n?, where [Zg\ Al = q - n.
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Proof of Theorem 2

> Set [Zg \ Al < n?, where [Zg\ Al = q - n.

» Note that Zg \ A is the union of all of the other color classes.
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Proof of Theorem 2

> Set [Zq \ Al < 2, where [Zg\ Al = q — n.
» Note that Zg \ A is the union of all of the other color classes.

» Bounding the number of possible solutions for x in
aj = X + aj, we get
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Proof of Theorem 2

> Set |Z, \ Al < n?, where |Zg\ Al = q — n.
» Note that Zg \ A is the union of all of the other color classes.
» Bounding the number of possible solutions for x in

aj = X + aj, we get
» g—n<n?
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Proof of Theorem 2

> Set [Zq \ Al < 2, where [Zg\ Al = q — n.
» Note that Zg \ A is the union of all of the other color classes.

» Bounding the number of possible solutions for x in
aj = X + aj, we get

» g—n<n?

> g+ <nmP+n+;
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Proof of Theorem 2

> Set |Z, \ Al < n?, where |Zg\ Al = q — n.
» Note that Zg \ A is the union of all of the other color classes.
» Bounding the number of possible solutions for x in
aj = X + aj, we get
» g—n<n?
> g+ <t
> q+3 <(n+3)?
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Proof of Theorem 2

> Set |Z, \ Al < n?, where |Zg\ Al = q — n.
» Note that Zg \ A is the union of all of the other color classes.
» Bounding the number of possible solutions for x in
aj = X + aj, we get
» g—n<n?
> g+ <t
> q+3 <(n+3)?
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Proof of Theorem 2

> Set |Z, \ Al < n?, where |Zg\ Al = q — n.
» Note that Zg \ A is the union of all of the other color classes.
» Bounding the number of possible solutions for x in
aj = X + aj, we get
» g—n<n?
> g+ <t
> q+3 <(n+3)?

» \Ja+i—3<n

» So, if we violate this, then there must be a polychromatic
. 1
triple for k > g27¢, for any ¢ > 0.
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Proof of Theorem 2

» Recall that k = %.
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Proof of Theorem 2

» Recall that k = %.

» We just showed that:
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Proof of Theorem 2

» Recall that k = %.

» We just showed that:

» So, if we violate this inequality, then there must be a
1
polychromatic triple for k > q2™¢, for any ¢ > 0.
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Proof of Theorem 1 (part 2)

» Inclusion-exclusion principle
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Proof of Theorem 1 (part 2)

> Inclusion-exclusion principle

» AUBUCUD|=|A|l+|B|+|C|+ |D|
—|ANB|—|ANC|—|AND|—|BNC]|... plus the triple
intersections, minus the quadruple intersection.
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Proof of Theorem 1 (part 2)

> Inclusion-exclusion principle

» AUBUCUD|=|A|l+|B|+|C|+ |D|
—|ANB|—|ANC|—|AND|—|BNC]|... plus the triple
intersections, minus the quadruple intersection.

» We can always find a polychromatic triple with more than
four color classes
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Proof of Theorem 1 (part 2)

» Inclusion-exclusion principle

» AUBUCUD|=|A|l+|B|+|C|+ |D|
—|ANB|—|ANC|—|AND|—|BNC]|... plus the triple
intersections, minus the quadruple intersection.

» We can always find a polychromatic triple with more than
four color classes

» We set the following restrictions on our sets and graph the
corresponding equations:
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Proof of Theorem 1 (part 2)

» These restrictions guarantee that any triple of the form
(x,y,x + y) comes from three different sets.
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Proof of Theorem 1 (part 2)

» These restrictions guarantee that any triple of the form
(x,y,x + y) comes from three different sets.

> XFy
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Proof of Theorem 1 (part 2)

» These restrictions guarantee that any triple of the form
(x,y,x + y) comes from three different sets.

> XFy

> x#x+y
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Proof of Theorem 1 (part 2)

v

These restrictions guarantee that any triple of the form
(x,y,x + y) comes from three different sets.

> xXFy
> XF Xty
>y Fxty
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Proof of Theorem 1 (part 2)

v

These restrictions guarantee that any triple of the form
(x,y,x + y) comes from three different sets.

> xXFy

> x#Ex+y

>y Fxty

x +y # a;, b for every a; € A, b; € B and where i ranges
from 0 to (n— 1)

v
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Proof of Theorem 1 (part 2)

» We now count the number of choices of x and y that will not
give a polychromatic triple. Using an inclusion-exclusion
argument (illustrated on the next slide)with m as the number
of elements in AU B that x and y cannot be, we have
3p(m+1)—(2(m+1)2+m)+ (1+3m+ T) —(S4) < p?
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Proof of Theorem 1 (part 2)

» We now count the number of choices of x and y that will not
give a polychromatic triple. Using an inclusion-exclusion
argument (illustrated on the next slide)with m as the number
of elements in AU B that x and y cannot be, we have
3p(m+1)—(2(m+1)2+m)+ (1+3m+ T) —(S4) < p?

> T=#{a+e=e: e, e ac(A\{xhUB\{y})} <m
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Proof of Theorem 1 (part 2)

Karissa, Katie,

We now count the number of choices of x and y that will not
give a polychromatic triple. Using an inclusion-exclusion
argument (illustrated on the next slide)with m as the number
of elements in AU B that x and y cannot be, we have
3p(m+1)—(2(m+1)2+m)+ (1+3m+ T) —(S4) < p?
T=#{ete=e e e eac(A\{X}HU(B\{y})} <

Ss=#{a+ea=e:ea,ec(A\{x})U(B\{y})} <
max{m, T}
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Proof of Theorem 1 (part 2)

We now count the number of choices of x and y that will not
give a polychromatic triple. Using an inclusion-exclusion
argument (illustrated on the next slide)with m as the number
of elements in AU B that x and y cannot be, we have
3p(m+1)—(2(m+1)2+m)+ (1+3m+ T) —(S4) < p?
T=i{a+te=e e, e eac(A\{x})U(B\{y})} <’
Ss=#{etea=ea:ea,0c(A\{x})U(B\{y}H} <
max{m, T}

So,3p+3pm—2m?> —4m -2+ T — 54 < p?

Karissa, Katie,
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Inclusion-exclusion figure

This is a graph of all of the points, (x, y), that will not yield a
polychromatic triple. The full lines are x =0,y =0, and y = x. The
vertical dashed lines are the cases of x € M, where the horizontal dashed
lines are the cases where y € M. Finally, the dotted lines indicate points,
(x,y), such that (x +y) € M.
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Proof of Theorem 1 (part 2)

» If T is at its worst possible case, m?, then S < T
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Proof of Theorem 1 (part 2)

» If T is at its worst possible case, m?, then S < T

» So, p2 —3p—3pm+2m? +4m+2 > 0, where
m=2(n—-1)=2(2 - 1) = 222k
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Proof of Theorem 1 (part 2)

» If T is at its worst possible case, m?, then S; < T

> So, p? —3p—3pm+2m? +4m+2 > 0, where
=2(n—1)=2(2 —1)= 222

> So, p? —3p — 3p(22K) +2(2 )2 + 4222 12> 0
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Proof of Theorem 1 (part 2)

v

If T is at its worst possible case, m?, then S < T

So, p? —3p—3pm+2m? +4m+2 > 0, where
=2(n—1)=2(2 —1)= 222

SO p _3p 3p(2p 2k)+2(2p 2k) +4(2p 2k)+2>0

From this, we can compute k > 4 and p > —ﬁ.

v

v

v
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Computational Examples

» Triples of the form (x, y, xy)
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Computational Examples

» Triples of the form (x, y, xy)

» Examples of color classes when no polychromatic
multiplicative triples occur in Z, when k =3

Karissa, Katie, Rafael - Missouri State University, Springfield Polychromatic Triples



Computational Examples

» Triples of the form (x, y, xy)

» Examples of color classes when no polychromatic
multiplicative triples occur in Z, when k =3

p Color Class 1 Color Class 2 Color Class 3
» 5 2,3 1,4 0
7 3,6,5 2,4 0,1
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Computational Examples

v

Triples of the form (x, y, xy)

v

Examples of color classes when no polychromatic
multiplicative triples occur in Z, when k =3

p Color Class 1 Color Class 2 Color Class 3

» 5 2,3 1,4 0
7 3,6,5 2,4 0,1
> As of yet, no further examples have been found when p is

greater than 7.
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Computational Examples

» Examples of color classes when no polychromatic
multiplicative triples occur in Zq when k = 3, where q is some
non-prime number.
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Computational Examples

» Examples of color classes when no polychromatic
multiplicative triples occur in Zq when k = 3, where q is some

non-prime number.
Color Class 1  Color Class 2 Color Class 3

q
6 1,4 2,5 0,3

. 8 2,3, 7 0,4,6 1,5
9 1, 4,8 0,36 2,5, 7
10 3,7,8 9 2,4,6 0,1,5
12 1,457 2, 8,10, 11 0,3,6,9

Polychromatic Triples
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Computational Examples

» Examples of color classes when no polychromatic
multiplicative triples occur in Zq when k = 3, where q is some

non-prime number.
g Color Class 1 Color Class 2 Color Class 3

6 1,4 2,5 0,3
. 8 2,3, 7 0,4,6 1,5
9 1, 4,8 0,36 2,5, 7
10 3,7,8 9 2,4,6 0,1,5
12 1,457 2, 8,10, 11 0,3,6,9

» No examples have been found for color classes in which no
additive polychromatic triples occur in Zg when k = 3.

Polychromatic Triples
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> Generalize Theorem 2 for fewer sets. We currently have
guaranteed the existence of a polychromatic triple in Zg for
k-colorings with k > q%+5, for any € > 0. Can we also
guarantee the existence of a polychromatic triple in Zq for
k-colorings with smaller k?
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> Generalize Theorem 2 for fewer sets. We currently have
guaranteed the existence of a polychromatic triple in Zg for
k-colorings with k > q%+5, for any € > 0. Can we also
guarantee the existence of a polychromatic triple in Zq for
k-colorings with smaller k?

» Computationally, polychromatic quadruples seem to exist
rather often. How can we guarantee their existence?
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