Ergodicity Coefficients and Associated Polytopes

Incheoul Chung

Missouri State University, Springfield, MO

July 11, 2017

- **•** Ergodicity has to do with the long-term behaviour of dynamical systems.
- Dynamical system described by a measure-preserving transformation.
- Time average equal spatial averages
- In a probability context, time average equals average over the probability space.
- State of the process after a long time is independent of the initial state.
- Possible when dynamical system is sufficiently "mixing".

- Examples of ergodic dynamical systems:
- **•** Irreducible Markov Chains
- **•** Irrational rotation of the circle \mathbb{R}/\mathbb{Z}
- **•** Bernoulli Shift
	- Let m be a probability measure on \mathbb{R} . Let $(\mathbb{R}^{\mathbb{N}}, \mathcal{E}, P)$ be a probability space such that there exists a sequence Y_i of i.i.d. random variables with distribution m.
	- The shift operator $\theta : \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{N}}$ defined by
	- $\theta(x_1, x_2, x_3, x_4, x_5, \dots) = (x_2, x_3, x_4, x_5, x_6, \dots)$
	- *θ* is an ergodic transformation.
- Example of a nonergodic dynamical system:
- **•** The double potential well in classical mechanics

For time-homogeneous Markov chains, every irreducible Markov chain is ergodic.

Theorem

Ergodic Theorem: Let Ω be a finite state space, f a real-valued function defined on Ω, *µ* any probability distribution on Ω. Define $\mathcal{E}_\mu = \sum_{\mathsf{x} \in \Omega} f(\mathsf{x}) \mu(\mathsf{x}).$ If (X_t) is an irreducible Markov chain, π is the stationary distribution of the Markov chain, then

$$
P_{\mu}\left\{\lim_{t\to\infty}\frac{1}{t}\sum_{s=0}^{t-1}f(X_s)=E_{\pi}(f)\right\}=1
$$

A formal definition of ergodicity for finite, inhomogeneous Markov chains.

Definition

Let ${S_k}$ be a sequence of $n \times n$, row-stochastic matrices, $k \ge 1$, and let $t_{ij}^{(\rho,r)}$ be the (i,j) th entry of the forward product $T^{(p,r)} = S_{p+1} S_{p+2} \dots S_{p+r}$. The sequence $\{S_k\}$ is said to be weakly ergodic if for all $1 \le i, j, k, \le n, p \ge 0$,

$$
\lim_{r\to\infty}t_{ik}^{(p,r)}-t_{jk}^{(p,r)}=0
$$

Roughly speaking, this means that a sequence of stochastic matrices is weakly ergodic if the rows equalize as the number of products increase.

Ergodicity coefficients are used to determine if a sequence is weakly ergodic.

Definition

A coefficient of ergodicity, or ergodicity coefficient, is a continuous scalar function $\mu(\cdot)$ defined for stochastic matrices S that satisfies

$$
0\leq \mu(\mathcal{S})\leq 1
$$

A coefficient of ergodicity is proper iff

$$
\mu(S) = 0 \iff \text{rank}(S) = 1
$$

Let μ be a proper coefficient of ergodicity, $\{S_k\}$ a sequence of stochastic matrices, $k\geq 1$. Let $\mathcal{T}^{(\rho,r)}= \mathcal{S}_{\rho+1}\mathcal{S}_{\rho+2}\ldots \mathcal{S}_{\rho+r}.$ The sequence $\{S_k\}$ is weakly ergodic if $\forall p \geq 0$,

$$
\lim_{r\to\infty}\mu(\mathcal{T}^{(p,r)})=0
$$

Many different kinds of ergodicity coefficients exist but I will focus on those generated from vector norms.

In particular, we focus on τ_1 and τ_∞ because their limits of maximum are convex polytopes.

[\[1\]](#page-21-1) If S, S_1 , S_2 are stochastic matrices, then

$$
\quad \ \ \, \mathbf{0}\leq\tau_{1}(\mathit{S})\leq1
$$

$$
2 \ |\lambda| \leq \tau_1(S) \ \text{for all eigenvalues} \ |\lambda| < 1 \ \text{of} \ S.
$$

$$
\text{I} \ \ \tau_1(S_1S_2) \leq \tau_1(S_1)\tau_1(S_2)
$$

$$
\quad \ \ \, \textcolor{red}{\bullet}\:\:|\tau_1(S_1) - \tau_1(S_2)| \leq \tau_1(S_1-S_2)
$$

$$
5 \tau_1(S) = 0 \iff rank(S) = 1
$$

[\[1\]](#page-21-1) If S, S_1, S_2 are stochastic matrices, then $0 \leq \tau_{\infty}(S) \leq ||S||_1$ 2 $|\tau_{\infty}(S_1) - \tau_{\infty}(S_2)| \leq \tau_{\infty}(S_1 - S_2)$ 3 $\tau_{\infty}(S_1S_2) \leq \tau_{\infty}(S_1)\tau_{\infty}(S_2)$ σ _{*τ*∞}(*S*) = 0 \iff *rank*(*S*) = 1

Because *τ*∞(S) can be greater than 1, *τ*[∞] is not a coefficient of ergodicity in a strict sense. But it is still useful.

There are two equivalent definitions of convex polytopes:

Definition

A convex polytope is a set that can be realized as the convex hull of finitely many points.

Definition

A convex polytope is a bounded set that can be realized as the intersection of halfspaces and hyperplanes.

Convex polytopes are automatically compact sets since it is the continuous image of a simplex.

Definition

Let $V \subseteq \mathbb{R}^d$. A supporting hyperplane of V is a hyperplane S such that one of the two halfspaces associated with S completely contains V and S contains at least one boundary point of V .

Theorem

If K is a convex set in \mathbb{R}^d , and $x_0 \in K$ is a point on the boundary of K, then there exists a supporting hyperplane containing x_0 .

Definition

Let $K \subset \mathbb{R}^d$ be a convex polytope. A set $F \subseteq K$ is a face iff $F = \emptyset$ or $F = K$, or if there exists a supporting hyperplane H of K such that $F = H \cap K$. Ø and K are called improper faces of K. Every other face is called a proper face. The faces that are exactly a single point are called vertices, and the maximal proper faces are called facets.

Convex polytopes have a natural CW complex structure where the k-skeleton consists of the union of all the faces of dimension k or less. Faces of a convex polytope are convex polytopes themselves.

Let $\|\cdot\|$ be a seminorm on \mathbb{R}^n and $\mathcal P$ a convex polytope embedded in \mathbb{R}^n . Then there exists a vertex v of \mathcal{P} , such that $||v|| = M = \max_{x \in \mathcal{D}} ||x||$.

Proof:

Suppose ${\mathcal P}$ is p-dimensional, $0\leq p\leq n$. Let ${\mathcal S}^{(q)}({\mathcal P})$ be the q -skeleton of P . Say that $x \in S^{(q)}$ such that $||x|| = M$. If $q = 0$, we are done. Otherwise, find $x_1, x_2 \in S^{(q-1)}(\mathcal{P}),\ t\in [0,1]$ such that $x = tx_1 + (1 - t)x_2$. Such two points always exist because each face of P is convex.

$$
M = ||x|| = ||tx_1 + (1-t)x_2|| \le t||x_1|| + (1-t)||x_2|| \le M
$$

Thus $||x_1|| = ||x_2|| = M$. If $q - 1 = 0$, we are done. If not, simply repeat the process until we reach a vertex.

Define

$$
U_1^{n-1} = \left\{ x \in \mathbb{R}^n \mid \sum_{i=1}^n x_i = 0 \right\} \cap \left\{ x \in \mathbb{R}^n \mid ||x||_1 \le 1 \right\}
$$

$$
U_{\infty}^{n-1} = \left\{ x \in \mathbb{R}^n \mid \sum_{i=1}^n x_i = 0 \right\} \cap \left\{ x \in \mathbb{R}^n \mid ||x||_{\infty} \le 1 \right\}
$$

Then

$$
\tau_1(S) = \max_{x \in U_1^{n-1}} ||S^T x||_1
$$

$$
\tau_{\infty}(S) = \max_{x \in U_{\infty}^{n-1}} ||S^T x||_{\infty}
$$

 U_1^{n-1} is a convex polytope with vertices of form $\frac{1}{2}(e_i-e_j)$ where $i \neq i$.

Theorem

 U_{∞}^{n-1} is a convex polytope. If n is even, the vertices are points in \mathbb{R}^n such that $\frac{n}{2}$ coefficients are equal to 1 and the other $\frac{n}{2}$ are equal to -1 . If n is odd, the vertices are points in \mathbb{R}^n such that $\lfloor n \rfloor$ $\frac{n]}{2}$ coefficients are 1, a different $\frac{\lfloor n\rfloor}{2}$ many coefficients are -1 and the last remaining coefficient is equal to 0.

For a fixed stochastic matrix S , the functional $x\mapsto ||S^{\mathcal{T}}x||_\rho$ is a seminorm. So by the previous theorems, we have that

$$
\tau_1(S) = \frac{1}{2} \max_{i,j} \sum_{k=1}^n |S_{ik} - S_{jk}|
$$

$$
\tau_{\infty}(S) = \max_{\phi \in E_n} \max_{1 \leq k \leq d} \left| \sum_{i=1}^d \phi(i) S_{ik} \right|
$$

where E_n is the set of vertices of U_{∞}^{n-1} . This gives an explicit form of the ergodicity coefficients that is useful for computations.

Picture References

- https://ckrao.wordpress.com/2015/02/27/cross-sections-of-acube/
- http://mathworld.wolfram.com/RegularOctahedron.html
- https://en.wikipedia.org/wiki/Cuboctahedron
- https://en.wikipedia.org/wiki/Octahedron
- **OD**r. Senger

Ipsen, Ilse CF and Selee, Teresa M, Ergodicity coefficients defined by vector norms, SIAM Journal on Matrix Analysis and Applications (2011): 153-200