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What is a frame?

A frame is best thought of as an overcomplete basis for some Hilbert
space H.

(A Hilbert space is a special kind of vector space which will be
defined soon). Before formally introducing frames, we seek to answer a
question: What good are they?
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Equiangular frames

The equiangular lines question is a natural question which has been
studied for many years:

Equiangular lines question

What is the maximum number of lines N(d) through the origin in Rd ,
d ≥ 2, such that the angle between any pair of lines is equal?

For example, we could pick our lines to be the x1-axis, x2-axis, . . . , and
xd -axis, in which case the angle between any pair of lines is π/2. This
means N(d) ≥ d ; in general one can do better. In [2], Greaves, Koole,
Munemasa, and Szöllősi give (for example) N(2) = 3, N(3) = N(4) = 6,
N(15) = 36; but the problem is still open for d = 14, 16 ≤ d ≤ 20, and
d ≥ 42.
This set of lines forms a frame in a natural way; Jasper, Mixon, and Fickus
use frames to give applications of this problem to coding theory in [3].
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Munemasa, and Szöllősi give (for example) N(2) = 3, N(3) = N(4) = 6,
N(15) = 36; but the problem is still open for d = 14, 16 ≤ d ≤ 20, and
d ≥ 42.
This set of lines forms a frame in a natural way; Jasper, Mixon, and Fickus
use frames to give applications of this problem to coding theory in [3].

Desgrottes, Soukup, Zhu Bounds on Subframes MSU August 3, 2017 3 / 23



Equiangular frames

The equiangular lines question is a natural question which has been
studied for many years:

Equiangular lines question

What is the maximum number of lines N(d) through the origin in Rd ,
d ≥ 2, such that the angle between any pair of lines is equal?

For example, we could pick our lines to be the x1-axis, x2-axis, . . . , and
xd -axis, in which case the angle between any pair of lines is π/2.

This
means N(d) ≥ d ; in general one can do better. In [2], Greaves, Koole,
Munemasa, and Szöllősi give (for example) N(2) = 3, N(3) = N(4) = 6,
N(15) = 36; but the problem is still open for d = 14, 16 ≤ d ≤ 20, and
d ≥ 42.
This set of lines forms a frame in a natural way; Jasper, Mixon, and Fickus
use frames to give applications of this problem to coding theory in [3].

Desgrottes, Soukup, Zhu Bounds on Subframes MSU August 3, 2017 3 / 23



Equiangular frames

The equiangular lines question is a natural question which has been
studied for many years:

Equiangular lines question

What is the maximum number of lines N(d) through the origin in Rd ,
d ≥ 2, such that the angle between any pair of lines is equal?

For example, we could pick our lines to be the x1-axis, x2-axis, . . . , and
xd -axis, in which case the angle between any pair of lines is π/2. This
means N(d) ≥ d ; in general one can do better.

In [2], Greaves, Koole,
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Signal processing

Imagine that I know the location of some free pizza, and I want to send
that information to you.

If I write the location in some agreed-upon
coordinate system as x = (x1, x2), one possibility would be to just send
you x1 and x2, or equivalently x • (1, 0) and x • (0, 1). But if the
information is being sent over some noisy channel, this is not ideal, since if
one of the coordinates is lost then there is no recourse. I could send you
each coordinate twice to protect against loss, but that requires four
transmissions. Or I can send you x • (1, 0), x • (0, 1), and x • (1, 1); any
two of these will allow you to recover x. That is because the set
{(0, 1), (1, 0), (1, 1)} forms a frame over R2.
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Signal processing

When transmitting a signal, the process is very similar.

The elements we
wish to describe are functions, and the basis is typically the celebrated
Fourier basis, which consists (up to normalizations) of

f (t) = {sin(nt), cos(nt)|n ∈ Z+}

In this context the study of frames has powerful applications to signal
processing, wavelets, and data compression (see [1]).
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What is a frame? (redux)

Earlier, we said a frame is best thought of as an overcomplete basis for
some Hilbert space H.

So what is a Hilbert space?
An inner product space is a vector space V over F = R or C together
with a function 〈−,−〉 : V × V → F (the inner product) satisfying:

〈a1v1 + a2v2,w〉 = a1〈v1,w〉+ a2〈v2,w〉
〈v , b1w1 + b2w2〉 = b1〈v ,w1〉+ b2〈v2,w2〉
〈v , v〉 ≥ 0; and 〈v , v〉 = 0 ⇐⇒ v = 0.

For example, the following are inner product spaces:

Rd or Cd with the standard dot product 〈v ,w〉 = v • w =
∑

viwi .

L2[0, 1], the functions f : [0, 1]→ F such that
∫ 1
0 |f (x)|2dx converges,

with 〈f , g〉 =
∫ 1
0 f (x)g(x)dx .
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What is a frame? (redux)

Notice that the inner product 〈−,−〉 generates a norm on V by

||v || = 〈v , v〉1/2

which makes our vector space V into a metric space.

Definition

A Hilbert space H is an inner product space which is complete relative
to the induced norm (which means that all Cauchy sequences in H
converge).

Both of the examples of inner product spaces from last slide are also
Hilbert spaces.
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What is a frame (for real this time)?

Now we are ready to define a frame.

Definition

In a Hilbert space H, a frame is a subset F = {ϕi}i∈I such that:

1 The elements of F span H.

2 There exist uniform positive constants A,B such that

A||x ||2 ≤
∑
i∈I
|〈x , ϕi 〉|2 ≤ B||x ||2

for all x ∈ H.

For example, if {ϕi} happen to form an orthonormal basis, then∑
i∈I |〈x , ϕi 〉|2 = ||x ||2 so this is a frame with A = B = 1.
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The upshot

If both I and dim(H) are finite, then condition 1 implies condition 2.

So in
Rd , any finite spanning set is a frame! This is why we like to think of a
frame as an overcomplete basis.
In the infinite case, things are a bit more complicated since we need to
ensure positivity (since A > 0) and finiteness (since B <∞). Fortunately,
we will be dealing mostly with the finite case.
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Some definitions

In order to make more sense of the definition of a frame, we introduce the
following function:

tF (x) =
1

||xi ||2
∑
i∈I
|〈x , ϕi 〉|2

We’re interested in the best possible constants A,B for a given frame,
which are as follows:

AF = inf
x 6=0∈H

tF (x)

BF = sup
x 6=0∈H

tF (x)

Note that since tF (ax) = tF (x) for all nonzero scalars a, it suffices to
consider ||x || = 1 in the equations above. This also means that if dim(H)
is finite, the inf and sup above are actually attained.
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Obscurity: our goal

We will soon see from examples that we want AF and BF to be close
together; we will quantify this as follows:

Definition

The obscurity Ω(F ) of a frame F is defined as

Ω(F ) =
BF

AF

The obscurity is independent of scaling and rotation about the origin. We
would like the obscurity to be small to make a better frame.

Definition

A frame is tight if Ω(F ) = 1.
A tight frame is Parseval if AF = BF = 1.
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A good frame: the Mercedes-Benz frame

The Mercedes-Benz frame consists of the following three vectors in R2:

ϕ1 = (0, 1) ϕ2 =
(√

3/2,−1/2
)

ϕ3 =
(
−
√

3/2,−1/2
)

so for any nonzero x = (x1, x2), we have:

tF (x) =
1

||xi ||2
∑
i∈I
|〈x , ϕi 〉|2

=
(x2)2 + ((

√
3/2)x1 − (1/2)x2)2 + (−(

√
3/2)x1 − (1/2)x2)2

x21 + x22
= 3/2

So AF = BF = 3/2, meaning the Mercedes-Benz frame is tight
(Ω(F ) = 1). It’s not Parseval; we could make it Parseval by scaling the ϕi

by a factor of
√

2/3.
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A bad frame: close vectors

Fix an angle 0 < α� π/4, and let F consist of the following three vectors:

ϕ1 = (1, 0) ϕ2 = (cosα, sinα) ϕ3 = (cosα,− sinα)

Then

tF (1, 0) = 12 + (cosα)2 + (cosα)2 = 1 + 2 cos2 α

tF (0, 1) = 02 + (sinα)2 + (sinα)2 = sin2 α

So AF ≤ sin2 α, BF ≥ 1 + 2 cos2 α. This means

Ω(F ) ≥ 1 + 2 cos2 α

sin2 α
→∞ (α→ 0)
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So what makes frames good and bad?

In the previous example, the main problem was

that as α→ 0, the vector
x could be close to orthogonal to all three vectors at once, so AF could
get very small. This wasn’t an issue in the Mercedes-Benz frame, because
the symmetry of that frame meant that no vector could get too close or
too far from all of the frame vectors at once.
In short, the obscurity measures how far from symmetry our frame is (in
a certain sense).

Question

Given a large frame, under what conditions does there exist a smaller
frame of specified size with small obscurity?
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a certain sense).

Question

Given a large frame, under what conditions does there exist a smaller
frame of specified size with small obscurity?
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Our strategy

In order to answer our questions, we adopt the following strategy:

Given an original frame F , use some condition on F to find some
“nice” subframes.

Using the definition of obscurity, bound the obscurity of these small
frames.

Take the union of these small frames to get our desired frame.

The last step relies on the following lemma.
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An important lemma

This lemma is a key component of our proofs:

Lemma

Let F , G be disjoint frames in H. Then

Ω(F ∪ G ) ≤ max(Ω(F ),Ω(G ))

In other words, if we glue two frames together, the resultant frame is no
worse than the frames we started with.
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Proof of lemma

To see this, notice that tF∪G = tF + tG .

Then since AF ≤ tF ≤ BF ,
AG ≤ tG ≤ BG ,

AF + AG ≤ tF∪G ≤ BF + BG

meaning AF∪G ≥ AF + AG , BF∪G ≤ BF + BG . So

Ω(F ∪ G ) =
AF∪G
BF∪G

≤ AF + AG

BF + BG
≤ max

(
AF

BF
,
AG

BG

)
= max (Ω(F ),Ω(G ))

where the second inequality follows from the general fact that for all
a, b, c , d > 0, a+b

c+d ≤ max
(
a
c ,

b
d

)
.

This completes the proof of the lemma; using this we can build frames out
of smaller ones.

Desgrottes, Soukup, Zhu Bounds on Subframes MSU August 3, 2017 17 / 23



Proof of lemma

To see this, notice that tF∪G = tF + tG . Then since AF ≤ tF ≤ BF ,
AG ≤ tG ≤ BG ,

AF + AG ≤ tF∪G ≤ BF + BG

meaning AF∪G ≥ AF + AG , BF∪G ≤ BF + BG . So

Ω(F ∪ G ) =
AF∪G
BF∪G

≤ AF + AG

BF + BG
≤ max

(
AF

BF
,
AG

BG

)
= max (Ω(F ),Ω(G ))

where the second inequality follows from the general fact that for all
a, b, c , d > 0, a+b

c+d ≤ max
(
a
c ,

b
d

)
.

This completes the proof of the lemma; using this we can build frames out
of smaller ones.

Desgrottes, Soukup, Zhu Bounds on Subframes MSU August 3, 2017 17 / 23



Proof of lemma

To see this, notice that tF∪G = tF + tG . Then since AF ≤ tF ≤ BF ,
AG ≤ tG ≤ BG ,

AF + AG ≤ tF∪G ≤ BF + BG

meaning AF∪G ≥ AF + AG , BF∪G ≤ BF + BG . So

Ω(F ∪ G ) =
AF∪G
BF∪G

≤ AF + AG

BF + BG
≤ max

(
AF

BF
,
AG

BG

)
= max (Ω(F ),Ω(G ))

where the second inequality follows from the general fact that for all
a, b, c , d > 0, a+b

c+d ≤ max
(
a
c ,

b
d

)
.

This completes the proof of the lemma; using this we can build frames out
of smaller ones.

Desgrottes, Soukup, Zhu Bounds on Subframes MSU August 3, 2017 17 / 23



Proof of lemma

To see this, notice that tF∪G = tF + tG . Then since AF ≤ tF ≤ BF ,
AG ≤ tG ≤ BG ,

AF + AG ≤ tF∪G ≤ BF + BG

meaning AF∪G ≥ AF + AG , BF∪G ≤ BF + BG .

So

Ω(F ∪ G ) =
AF∪G
BF∪G

≤ AF + AG

BF + BG
≤ max

(
AF

BF
,
AG

BG

)
= max (Ω(F ),Ω(G ))

where the second inequality follows from the general fact that for all
a, b, c , d > 0, a+b

c+d ≤ max
(
a
c ,

b
d

)
.

This completes the proof of the lemma; using this we can build frames out
of smaller ones.

Desgrottes, Soukup, Zhu Bounds on Subframes MSU August 3, 2017 17 / 23



Proof of lemma

To see this, notice that tF∪G = tF + tG . Then since AF ≤ tF ≤ BF ,
AG ≤ tG ≤ BG ,

AF + AG ≤ tF∪G ≤ BF + BG

meaning AF∪G ≥ AF + AG , BF∪G ≤ BF + BG . So

Ω(F ∪ G ) =
AF∪G
BF∪G

≤ AF + AG

BF + BG
≤ max

(
AF

BF
,
AG

BG

)
= max (Ω(F ),Ω(G ))

where the second inequality follows from the general fact that for all
a, b, c , d > 0, a+b

c+d ≤ max
(
a
c ,

b
d

)
.

This completes the proof of the lemma; using this we can build frames out
of smaller ones.

Desgrottes, Soukup, Zhu Bounds on Subframes MSU August 3, 2017 17 / 23



Proof of lemma

To see this, notice that tF∪G = tF + tG . Then since AF ≤ tF ≤ BF ,
AG ≤ tG ≤ BG ,

AF + AG ≤ tF∪G ≤ BF + BG

meaning AF∪G ≥ AF + AG , BF∪G ≤ BF + BG . So

Ω(F ∪ G ) =
AF∪G
BF∪G

≤ AF + AG

BF + BG

≤ max

(
AF

BF
,
AG

BG

)
= max (Ω(F ),Ω(G ))

where the second inequality follows from the general fact that for all
a, b, c , d > 0, a+b

c+d ≤ max
(
a
c ,

b
d

)
.

This completes the proof of the lemma; using this we can build frames out
of smaller ones.

Desgrottes, Soukup, Zhu Bounds on Subframes MSU August 3, 2017 17 / 23



Proof of lemma

To see this, notice that tF∪G = tF + tG . Then since AF ≤ tF ≤ BF ,
AG ≤ tG ≤ BG ,

AF + AG ≤ tF∪G ≤ BF + BG

meaning AF∪G ≥ AF + AG , BF∪G ≤ BF + BG . So

Ω(F ∪ G ) =
AF∪G
BF∪G

≤ AF + AG

BF + BG
≤ max

(
AF

BF
,
AG

BG

)

= max (Ω(F ),Ω(G ))

where the second inequality follows from the general fact that for all
a, b, c , d > 0, a+b

c+d ≤ max
(
a
c ,

b
d

)
.

This completes the proof of the lemma; using this we can build frames out
of smaller ones.

Desgrottes, Soukup, Zhu Bounds on Subframes MSU August 3, 2017 17 / 23



Proof of lemma

To see this, notice that tF∪G = tF + tG . Then since AF ≤ tF ≤ BF ,
AG ≤ tG ≤ BG ,

AF + AG ≤ tF∪G ≤ BF + BG

meaning AF∪G ≥ AF + AG , BF∪G ≤ BF + BG . So

Ω(F ∪ G ) =
AF∪G
BF∪G

≤ AF + AG

BF + BG
≤ max

(
AF

BF
,
AG

BG

)
= max (Ω(F ),Ω(G ))

where the second inequality follows from the general fact that for all
a, b, c , d > 0, a+b

c+d ≤ max
(
a
c ,

b
d

)
.

This completes the proof of the lemma; using this we can build frames out
of smaller ones.

Desgrottes, Soukup, Zhu Bounds on Subframes MSU August 3, 2017 17 / 23



Proof of lemma

To see this, notice that tF∪G = tF + tG . Then since AF ≤ tF ≤ BF ,
AG ≤ tG ≤ BG ,

AF + AG ≤ tF∪G ≤ BF + BG

meaning AF∪G ≥ AF + AG , BF∪G ≤ BF + BG . So

Ω(F ∪ G ) =
AF∪G
BF∪G

≤ AF + AG

BF + BG
≤ max

(
AF

BF
,
AG

BG

)
= max (Ω(F ),Ω(G ))

where the second inequality follows from the general fact that for all
a, b, c , d > 0, a+b

c+d ≤ max
(
a
c ,

b
d

)
.

This completes the proof of the lemma; using this we can build frames out
of smaller ones.

Desgrottes, Soukup, Zhu Bounds on Subframes MSU August 3, 2017 17 / 23



Proof of lemma

To see this, notice that tF∪G = tF + tG . Then since AF ≤ tF ≤ BF ,
AG ≤ tG ≤ BG ,

AF + AG ≤ tF∪G ≤ BF + BG

meaning AF∪G ≥ AF + AG , BF∪G ≤ BF + BG . So

Ω(F ∪ G ) =
AF∪G
BF∪G

≤ AF + AG

BF + BG
≤ max

(
AF

BF
,
AG

BG

)
= max (Ω(F ),Ω(G ))

where the second inequality follows from the general fact that for all
a, b, c , d > 0, a+b

c+d ≤ max
(
a
c ,

b
d

)
.

This completes the proof of the lemma; using this we can build frames out
of smaller ones.

Desgrottes, Soukup, Zhu Bounds on Subframes MSU August 3, 2017 17 / 23



A theorem

Using this lemma, we can prove the following result:

Theorem

Suppose we have a frame F consisting of n nonzero vectors in Rd , with a
the ratio between the largest and smallest norm, and d |k ≤ n. Then if we
can find d disjoint subsets E1,E2, . . .Ed ⊂ F each containing ≥ k/d
vectors such that the angle between vectors in different subsets is ≥ β,
there is a subframe E ⊂ F such that |E | = k and:

BE ≤ (d − 1)a2 + 1

BE ≤ a2 + (1/2)(d − 2)a2(1 + cosβ) + (1/2)(1 + cosβ)

AE ≥ (1/2)(1− cosβ) so long as d = 2

If d > 2 we need a stronger condition on F to get a good bound on AE .
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A word on angles

Incidentally, the angle between two vectors x , y is defined as the unique
θ ∈ [0, π/2] such that

cos θ =
|〈x , y〉|
||x ||||y ||

The reason for this nonstandard definition is that replacing a vector ϕi in a
frame by −ϕi does not affect obscurity since |〈x , ϕi 〉|2 = |〈x ,−ϕi 〉|2. So
in effect we want to measure the angle between lines and not vectors.
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AE in higher dimensions

In higher dimensions we need the following (stronger) assumptions to get
the following (stronger) result:

Theorem

Suppose we have a frame F consisting of n nonzero unit vectors in Rd ,
and d |k ≤ n. Suppose further that there exists an orthonormal basis {fi}
and an angle γ < π/4 such that for each fi there exist at least k/d vectors
of F with angle ≤ γ from fi . Then there exists a subframe E of F with

AE ≥ 1− γ
BE ≤ 1 + γ

This means Ω(E ) ≤ 1+γ
1−γ .
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A probabilistic bound

Notice that as n→∞, n� k , there “should” be a good subframe of size
k if the points are evenly distributed.

This intuition turns out to be correct.

Theorem

Suppose we pick N points uniformly at random on the unit circle, and
2� r � N with 2|r . Then for any k > 2, 2|k, there is a ≥ q probability
of finding a subframe F with |F | = k and

Ω(F ) ≤ ctn2(π/4− π/r) = tan2(π/4 + π/r)

so long as

Φ∗(2k) ≤
√

2(1− q)

r

where Φ∗ is the cdf of a normal distribution with mean N and standard
deviation

√
N(r − 1).
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Unpacking this theorem

Equivalently:

1√
2πN(r − 1)

∫ 2k

−∞
e
− (t−N)2

2N(r−1) dt ≤
√

2(1− q)

r
.

This looks ghastly; but it’s quite useful. Suppose we let N = 1000 and
r = 100. Then we get that for 1000 points, distributed randomly on a
circle, the probability of having a subframe of size k with obscurity at
most tan2(π/4 + π/100) ≈ 1.134 is at least:

.999958 (k = 10) .998486 (k = 100) .486196 (k = 300)

Results in higher dimensions, though, would require bounds on sphere
packings which are still open problems!
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e
− (t−N)2

2N(r−1) dt ≤
√

2(1− q)

r
.

This looks ghastly; but it’s quite useful. Suppose we let N = 1000 and
r = 100. Then we get that for 1000 points, distributed randomly on a
circle, the probability of having a subframe of size k with obscurity at
most tan2(π/4 + π/100) ≈ 1.134 is at least:
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