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Definitions
Background

o Finite sets (e.g. Zs)

Lin & Thomas Hinges and Incidences



Introduction
Definitions
Background

nitions: Groups

Groups (e.g. (Z,+))

A set (not necessarily finite) that holds four properties:
o Closed under an operation
o Associative Property
o Identities

o Inverses

Lin & Thomas Hinges and Incidences



Introduction
Definitions
Background

nitions: Groups

Groups (e.g. (Z,+))
A set (not necessarily finite) that holds four properties:
o Closed under an operation
o Associative Property
o Identities
o Inverses

o A special type of group: Abelian Groups
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Introduction
Definitions
Background

nitions: Rings

Rings (e'g' <Za +, ))
Sets with 2 operations (addition and multiplication) that hold the
following properties:

o Abelian group under addition

o Multiplication is associative

o Distributive law
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Introduction

Definitions
Background

Rings (e'g' <Z7 +, >)
Sets with 2 operations (addition and multiplication) that hold the
following properties:

o Abelian group under addition

o Multiplication is associative

o Distributive law

o A special type of ring: Fields
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Introduction

Definitions
Background

Fields (e.g. (R, +, X))
A ring that holds the following properties:

o Multiplication is commutative (commutative ring)
o The ring contains a multiplicative identity (ring with unity)

o All nonzero elements have a multiplicative inverse
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Introduction
Definitions
Background

nition: Division Ring

A division ring is a ring with unity where all the the nonzero
elements have a multiplicative inverse.
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Introduction
Definitions
Background

nitions: Notation

2 or <: "Approximately" less (greater) than or equal to

o If X(n) and Y(n) depend on some parameter n, then if there
exists constants C,N >0:Vn> N,

[X(n)] < ClY(n)]

We write X < Y.
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Introduction
Definitions
Background

nitions: k-chains

o 1-chain: The pairs that are a certain « distance apart
((x1,%2) €ER? : |x; — x| = ).
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Introduction
Definitions
Background

nitions: k-chains

o 1-chain: The pairs that are a certain « distance apart
((x1,%2) €ER? : |x; — x| = ).

@ 2-chain (hinge): The triples such that the ith and (i + 1)th
terms are specific distances apart.
((Xl,Xz,X3) € Rz : |X1 — X2| =01, |X2 —X3| = az)
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Introduction
Definitions
Background

itions: k-chains

o 1-chain: The pairs that are a certain « distance apart
((x1, %) €ER?: |x — x2| = ).

@ 2-chain (hinge): The triples such that the ith and (i + 1)th
terms are specific distances apart.
((x1,x0,x3) ER? : |xg — x2| = a1, |x0 — 3| = 2)

o k-chain: The set of k-tuples such that the jth and (i + 1)th
terms are specific distances apart.
(X1, .0 k) ER?: |x1 — x2| = a1, | Xk — Xkg1] = i)
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Introduction
Definitions
Background

kground: Unit Distance Problem

Erd8s unit distance problem:
Estimates the maximum number of pairs of points the are a unit
distance away from each other in a finite set.

o Conjecture: n logn (1946)
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Introduction
Definitions
Background

ground: Unit Distance Problem

Erd8s unit distance problem:
Estimates the maximum number of pairs of points the are a unit
distance away from each other in a finite set.

o Conjecture: n logn (1946)

o The trivial result: ('2’) = n?
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Introduction
Definitions
Background

ground: Unit Distance Problem

Erd8s unit distance problem:
Estimates the maximum number of pairs of points the are a unit
distance away from each other in a finite set.

o Conjecture: n logn (1946)

o The trivial result: ('2’) = n?

o Best result: n*/3 (1984)
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Introduction
Definitions
Background

kground: Hinges

What's the connection?

o Like with the unit distance problem, we can set positions for 2
points to limit our possibilities when counting hinges.
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Introduction
Definitions
Background

ground: Hinges

What's the connection?

o Like with the unit distance problem, we can set positions for 2
points to limit our possibilities when counting hinges.

o A proof on how to find hinges in R? for a set E with n
elements.
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Introduction

Definitions
Background

What happens when we switch from R? to integer modulo g sets
(22)?
o Circles are geometrically different, containing approximately g
points (Covert, losevich, Pakianathan, 2018).
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Introduction

Definitions
Background

What happens when we switch from R? to integer modulo g sets
(22)7
o Circles are geometrically different, containing approximately g
points (Covert, losevich, Pakianathan, 2018).

o Intersections between circles can be at more than 2 points,
even if the circles are not necessarily the same.
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Introduction

Definitions
Background

What happens when we switch from R? to integer modulo g sets
(22)7
o Circles are geometrically different, containing approximately g
points (Covert, losevich, Pakianathan, 2018).

o Intersections between circles can be at more than 2 points,
even if the circles are not necessarily the same.

o Thus, we let g = p?, p a prime, to keep things more
manageable.
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Introduction

Definitions
Background

We will also be working with hinges in IF?,. This time g = p’ where
l>2.
Fq =

0,1, ..., p—1}U{x, 2x, .., (p—1)x}U..U{x"71, 2x"71 . (p=1)"1} /F(x)

Where f(x) is an irreducible polynomial of degree / in F,[x].
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Introduction
Definitions
Background

kground: Other work

We study Fq and Z, because:

o Researchers are exploring these sets: Finding solutions to the
diagonal equations

a1x12 + X3

n:a

in Fy
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Introduction

Definitions
Background

We study g and Zg because:

o They help us learn more information about larger fields and
rings such as Q (losevich, Rudnev, 2008).
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Statement
Key Tools
Results

Hinges in (:q)2

Main Theorem

o In Zf,, our definition of distance is as follows:
Ix —y| = (a —y1)? + (2 — y)2
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Statement
Key Tools
Results

Hinges in (:q)2

ain Theorem

o In Zf,, our definition of distance is as follows:
x =yl = (a = n)*+ (e - y2)*

o We define H(E) to be the set of hinges defined by our set
ECZ.
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Statement
Key Tools
Results

Hinges in (:q)2

Main Theorem

o In Zf,, our definition of distance is as follows:
x =yl = (a = n)*+ (e - y2)*

o We define H(E) to be the set of hinges defined by our set
ECZ.

For some E C 72, where q = p® and p is an odd prime,

|H(E)| < p|EI®
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Statement
Key Tools
Results

Hinges in (:q)2

Main Theorem

o In Zf,, our definition of distance is as follows:
x =yl = (a = n)*+ (e - y2)*

o We define H(E) to be the set of hinges defined by our set
ECZ.

For some E C 72, where q = p® and p is an odd prime,

|H(E)| < p|EI®

Note that this is a nontrivial bound for |E| > p
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Statement
Key Tools
Results

Hinges in (:q)2

o Basic question: How many times do two unit circles in Zg
intersect?
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Statement
Key Tools
Results

Hinges in (:q)2

o Basic question: How many times do two unit circles in Zg
intersect?

o Because this property is translation invariant, we just look at
unit circles intersecting the unit circle centered at the origin.
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Statement
Key Tools
Results

Hinges in (:q)2

o First, let us just count points on one circle. We define a
function similar to an indicator function, C(x), such that when
x lies on the circle, C(x) = 0 but is nonzero otherwise.
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Statement
Key Tools
Results

Hinges in (:q)2

o First, let us just count points on one circle. We define a
function similar to an indicator function, C(x), such that when
x lies on the circle, C(x) = 0 but is nonzero otherwise.

o To count the zeros, we use the following equation:

ICl=q7" > > x(m(C(x)))

mEZq xEZ%
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Statement
Key Tools
Results

Hinges in (:q)2

o First, let us just count points on one circle. We define a
function similar to an indicator function, C(x), such that when
x lies on the circle, C(x) = 0 but is nonzero otherwise.

o To count the zeros, we use the following equation:
ICl=q" > > x(m(C(x)))
mEZq xEZ%

2mim

o Here x(m)=e «

, which are the g™ roots of unity.
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Statement
Key Tools
Results

Hinges in (:q)2

Roots of Unity

€l = a7 Xmez, 2oxezz X(M(C (X))

i
wsy wa
wy
wy
T g
wg 1
ws
wg
Weg we
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Statement
Key Tools
Results

Hinges in (:q)2

ain equation

o If C(x) is the function for the unit circle centered at the origin,
it's easy to see that C(x) = xZ + x3 — 1. So, we want to
intersect this with a unit circle centered at (h, k) € Z2. Hence
the function for that is D(x) = (x1 — h)? + (xo — k)% — 1.
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Statement
Key Tools
Results

Hinges in (:q)2

ain equation

o If C(x) is the function for the unit circle centered at the origin,
it's easy to see that C(x) = xZ + x3 — 1. So, we want to
intersect this with a unit circle centered at (h, k) € Z2. Hence
the function for that is D(x) = (x1 — h)? + (xo — k)% — 1.

=q2 > > x(m(C)))x(m'(D(x))

mEZq m EZq XEZ2
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Statement
Key Tools
Results

Hinges in (:q)2

Roots of Unity

o Note that takin.g > ez, X(ux), where u € Z‘;’ will still sum to
zero as we are just permuting the roots of unity.
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Statement
Key Tools
Results

Hinges in (:q)2

oots of Unity

o Note that takin.g erZq X(ux), where u € Z;I, will still sum to
zero as we are just permuting the roots of unity.

X
p

just now summing over the pth roots of unity.

o Furthermore, if u € pZ, the sum is still zero because we are

Lin & Thomas Hinges and Incidences



Statement
Key Tools
Results

Hinges in (:q)2

oots of Unity

o Note that takin.g erZq X(ux), where u € Z;I, will still sum to
zero as we are just permuting the roots of unity.

o Furthermore, if u € pZ;, the sum is still zero because we are
just now summing over the pth roots of unity.

o Also, since our sums are finite, we can exchange the order.
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Statement
Key Tools
Results

Hinges in (:q)2

o Our main tool is Quadratic Gauss Sumes:

o For positive integers a, b, n, the following is called a Gauss
Sum:

G(a,b,n) = Z x(ax? 4 bx)

XEZn

For ease, we will write G(a, n) in place of G(a,0,n).
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Statement
Key Tools
Results

Hinges in (:q)2

egendre Symbol

o In order to understand Gauss Sums, we need to understand the
Jacobi symbol, which is a generalization to the Legendre
symbol.
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Statement
Key Tools
Results

Hinges in (:q)2

egendre Symbol

o In order to understand Gauss Sums, we need to understand the
Jacobi symbol, which is a generalization to the Legendre
symbol.

Definition

Let p be a prime and a € Z, then the Legendre symbol (3) is
p
defined by:

1 if ais a quadratic residue modulo p

0,

—1 otherwise
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Statement
Key Tools
Results

Hinges in (:q)2

Legendre Symbol

(Euler) Let a € Z and p be an odd prime. Then,

apTl = (3) mod p
p
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Statement
Key Tools
Results

Hinges in (:q)2

acobi Symbol

The Jacobi symbol is defined on n € Z and a € Z,, as follows:

<a> ( a) 1 ( a) 2 ( ) "
n p1 P2 Pn
where n = p"* p3? - - pon.
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Statement
Key Tools
Results

Hinges in (:q)2

auss Sums

o If we have a € Z) and n is odd, then:

a

G(a,n) = ¢, (—) Vvn

n
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Statement
Key Tools
Results

Hinges in (:q)2

auss Sums

o If we have a € Z) and n is odd, then:
a
G(a,n) = en (2) v

o Here, we have that (5) defines the Jacobi symbol.

Furthermore,
1 n=1 mod4
€h =4 .
i n=3 mod4
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Statement
Key Tools
Results

Hinges in (:q)2

Gauss Sums

Proposition

For any a € Z,,, we have that:

b
(2.M6 (@ e o) (@718
0 otherwise

G(a, b, n) ={
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Statement
Key Tools
Results

Hinges in (:q)2

Gauss Sums

Proposition

Suppose that a € 7, where n is odd. Then, we have that:

G(a, b, n) = (a,n)G(a, n)x (_—bz)

4a

Proposition
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Statement
Key Tools
Results

Hinges in (:q)2

ntersection Bound

o Using these techniques and splitting up our sums over m and
m’ by looking at (m + m’, q), we reached the following
bounds, as of now.
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Statement
Key Tools
Results

Hinges in (:q)2

ntersection Bound

o Using these techniques and splitting up our sums over m and
m’ by looking at (m + m’, q), we reached the following
bounds, as of now.

o If hyk =0, we have |/| = |g+ 0 — p(ep)?| = g — p(ep)?.
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Statement
Key Tools
Results

Hinges in (:q)2

ntersection Bound

o Using these techniques and splitting up our sums over m and
m’ by looking at (m + m’, q), we reached the following
bounds, as of now.

o If hyk =0, we have |I| = |g+ 0 — p(e,)?| = g — p(ep)?.
o If h=0and k € pZ*, we get || =|p+ 0+ p| = 2p.
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Statement
Key Tools
Results

Hinges in (:q)2

ntersection Bound

(*]

Using these techniques and splitting up our sums over m and
m’ by looking at (m + m’, q), we reached the following
bounds, as of now.

If h,k =0, we have |/| = |q+ 0 — p(ep)?| = g — p(ep)?.
If h=0and k € pZ}, we get |I| = |p+ 0+ p| = 2p.
If h=sp, k = tp, we have

©

©

©

|I|_{|p~|—0—e,%p| s2+t2 € pZ,
- 242 2 2
\p+0+<sT)p| s +t° ey
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Statement
Key Tools
Results

Hinges in (:q)2

ntersection Bound

o Now, if h € Zg and k € pZp, we have multiple cases:

l+p—1+0/=p h’=4 modgq

| = [1-140/=0 W =4+dp mod q,d € Z;

_r
|1+0+<1p“)] h?> #4 mod p
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Statement
Key Tools
Results

Hinges in (:q)2

ntersection Bound

o Lastly, if h,k € Z;:

1+0-e| (FP+Kq) =g
< {11+l (P + Kk q) =1
1+ VP—el (KP+K.q)=p

Define:

p—1+40 P +k’>=4 modgqg
¢ = -1+0 P+1P=4+dp mod q,d € Z,

2 2
> 2 1_/7 +k .
<h :k ) < = > otherwise
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Statement
Key Tools
Results

Hinges in (:q)2

Sharpness Example

o To show that our bound is sharp, it is sufficient to find a set,
EC Z%, with |E|?p hinges.
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Statement
Key Tools
Results

Hinges in (:q)2

>harpness Example

o To show that our bound is sharp, it is sufficient to find a set,
EC Z%, with |E|?p hinges.

o To do this consider the following two sets:

B ={(1,0),(1,p),(1,2p), ... (1,(p — 1)p)}

Take x,z € A and y € B. All of the unit circles centered at
points in A intersect at the points in B.
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Statement
Key Tools
Results

Hinges in (:q)2

harpness Example

o To show that our bound is sharp, it is sufficient to find a set,
EC Z%, with |E|?p hinges.

o To do this consider the following two sets:

B ={(1,0),(1,p),(1,2p), ... (1,(p — 1)p)}

Take x,z € A and y € B. All of the unit circles centered at
points in A intersect at the points in B.

o Note that this gives |E|® possible hinges when |E| < p.
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Statement
Key Tools
Results

Hinges in (:q)2

Averaging

x,y,2€2L3
< >, P+ > NG
x,zeE x,ze€E
(21,22):(X1+h,X2+k) s.t. (21 ,Zz):(X1+h,X2+k) s.t.

h,k€pZpVh?+k?=4 mod q h,k€Zy AR?+k?=dp mod q

dezy
+ > 1

x,z in the rest of E

=T1+T)+T3
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Statement
Key Tools
Results

Hinges in (:q)2

Averaging

o Now, we examine each of these terms. T;. We clearly have
|E| choices for x. The choices for z are more complicated. It
comes out to:

Choices for z < p?> +2p+2-p(p— 1) < p?

Hence, our bound on this term is |E| - |p| - min{p?, |E|}.
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Statement
Key Tools
Results

Hinges in (:q)2

Averaging

o Now, we examine each of these terms. T;. We clearly have
|E| choices for x. The choices for z are more complicated. It
comes out to:

Choices for z < p?> +2p+2-p(p— 1) < p?

Hence, our bound on this term is |E| - |p| - min{p?, |E|}.
o For T, we have |E| choices for x. For z, we get p3. Hence,

T2 < |E|- |y/pl - min{p®, |E[}

Lin & Thomas Hinges and Incidences



Statement
Key Tools
Results

Hinges in (:q)2

o Now, we examine each of these terms. T;. We clearly have
|E| choices for x. The choices for z are more complicated. It
comes out to:

Choices for z < p?> +2p+2-p(p— 1) < p?

Hence, our bound on this term is |E| - |p| - min{p?, |E|}.
o For T, we have |E| choices for x. For z, we get p3. Hence,

T> < |E| - [Vp| - min{p®, [E[}
o Finally, T3 < |EJ?. So, in total:

[H(E)| < |Elpmin{p®, |E|} + [E| - |v/pl - min{p®, |E|} + |E|*
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Statement
Key Tools
Results

Hinges in (:q)2

Averaging

o With a little bit of work we get the following bounds:

(|E E[<p

EPp p<|E|<p?
|H(E)| < 4 |E|p® p* < |E| < p*/p
ERVB  p2y/p < |E| < p?
LElP*/P P* < |E|
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Statement
Key Tools
Results

Hinges in (:q)2

@ The maximum number of k-chains in a finite set E, is
bounded by the following piecewise equation, which uses both

our hinge bound and our intersection bound. Note that this
requires k > 2.

|H(E)|™ k=3m
#x S < |H(E)|™ - |E| k=3m+1
|H(E)|™-p-|E| k=3m+2
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Main Question
Key Tools

Hinges in (Fq)? Results

ain Question

o Now, we want to look at intersections in F, for g = p'.
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Main Question
Key Tools

Hinges in (Fq)? Results

ain Question

o Now, we want to look at intersections in F, for g = p'.

o 11 =q72 3 e, 2oxyer, X(=m(x® 4y = 1))x(=m'((x —
h? 4+ (y — k)? = 1))
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Main Question
Key Tools

Hinges in (Fq)? Results

ain Question

o Now, we want to look at intersections in F, for g = p'.

o 11 =q72 3 e, 2oxyer, X(=m(x® 4y = 1))x(=m'((x —
h)? +(y — k)* = 1))

o Note that we have to change our definition of x because it
doesn’t make any sense to take e for x € Fg.
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Main Question
Key Tools
Results

Hinges in (TF‘[,)2

o For a € Fy, x(a) = e?mitr(e),
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Main Question
Key Tools
Results

Hinges in (TF‘[,)2

o For a € Fy, x(a) = e?mitr(e),

1

otr(d)=a+aP+--+af .
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Main Question
Key Tools
Results

Hinges in (TF‘[,)2

o For a € Fy, x(a) = e?mitr(e),

1

otr(d)=a+aP+--+af .
o tr:iFy — IFp.
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Main Question
Key Tools
Results

Hinges in (TF‘[,)2

o For a € Fy, x(a) = e?mitr(e),

otr(d)=a+aP+--+af .

o tr:iFy — IFp.

o Note that this equation permutes everything in a nontrivial
way, but does make our equation work as intended.
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Main Question
Key Tools

Hinges in (Fq)? Results

auss Sums

o Let 5 Fg, and let g = p!. Then the Gauss sum g(83, k) over
[F, is defined by

g (5, k)= 3 e2rintsat)/o

aclFq
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Main Question
Key Tools

Hinges in (Fq)? Results

auss Sums

o Let B €T, and let g = p'. Then the Gauss sum g;(3, k) over
[F, is defined by

g(5,0) = Y exmintoao

aclFq

o When we let kK = 2, which is what we need for our question,
we have that

g1(8,2) = p(B")ai(1,2)

Here, p is the canonical quadratic character in Fy.

Lin & Thomas Hinges and Incidences



Main Question
Key Tools

Hinges in (Fq)? Results

auss Sums

o Let B €T, and let g = p'. Then the Gauss sum g;(3, k) over
[F, is defined by

g(5,0) = Y exmintoao

aclFq

o When we let kK = 2, which is what we need for our question,
we have that
g/(ﬂ? 2) = p(ﬁ_l)g/(]-’ 2)
Here, p is the canonical quadratic character in Fy.

r(p-1)% 1

o g(1,2) = (-1 g2
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Main Question
Key Tools

Hinges in (Fq)? Results

ntersection Bound

1+0+-1=0 h* 4+ k? =0
o | = 1+0+p(h +i2)p (1- B52) 14 842 20
1+0+0=1 1+ P4 — ¢
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Main Question
Key Tools

Hinges in (Fq)? Results

ntersection Bound

1+0+-1=0 h* 4+ k? =0
o |l = 1+o+p(h2+k2)p(1—#) 1+ M2k 2

1+0+0=1 1+ P4 — ¢
o |H(E)| < |EI?
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Main Question
Key Tools
Results

Hinges in (]Fq)2

o Erdés, Paul (1946), "On sets of distances of n points",
American Mathematical Monthly, 53 (5): pp. 248-250,
doi:10.2307/2305092.

o Spencer, Joel; Szemerédi, Endre; Trotter, William T. (1984),
"Unit distances in the Euclidean plane", in Bollobas, Béla,
Graph Theory and Combinatorics, London: Academic Press,
pp. 293-308, ISBN 0-12-111760-X, MR 0777185.

o Covert, David; losevich, Alex; Pakianathan, Jonathan (2012),
"Geometric Configurations in the Ring of Integers Modulo p",
Indiana University Mathematics Journal, 61 (5): pp.
1949-19609.
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