Analysis of the Boundary

Topology and Fractal Structure

Conclusion

A Geometric and Analytic Examination of a Midpoint Iterative Function System

J. Foster¹ S. Moore² A. Somers³

¹Washington University in St. Louis

²The University of Alabama ³Missouri State University

Missouri State University REU, 2018

Analysis of the Boundary

Topology and Fractal Structure

Outline

Introduction

- The Midpoint Iterative Function System (IFS)
- Definitions

2 Analysis of the Boundary

- The Geometric Progression of the IFS
- \bullet Bounds on ${\mathcal P}$ and ${\mathcal B}$

Topology and Fractal Structure

- Topological Analysis
- Farey Sequences and the Stern-Brocot Tree
- The Derivative

Conclusion

Analysis of the Boundary

Topology and Fractal Structure

The Midpoint Process Simple Definition

- Consider the set P₀ consisting of the vertices of the unit square: (0,0),(0,1),(1,0),(1,1).
- 2. Generate the midpoint of every pair of points in P_0 and consider this set of midpoints to be the first iteration, P_1 .
- 3. Repeat from P_n to P_{n+1}

Analysis of the Boundary

Topology and Fractal Structure

Conclusion 00

Iterations 0 - 7 (Outer Ring)

Introduction	
000000000000000000000000000000000000000	j

Analysis of the Boundary

Topology and Fractal Structure

Conclusion

Iteration 10

Introduction	Analysis of the Boundary	Topology and Fractal Structure	Conclusion 00
Formal De	finitions		
A and the Metr	ic Space		

Let *I* be the unit interval and let $I^2 := I \times I$. Let $\mathscr{A} = \{A \subset I^2 \mid A \text{ is compact}\}$. For $A \in \mathscr{A}$, and $\epsilon > 0$, let $U(A, \epsilon)$ be the ϵ -neighborhood of *A*.

Definition

For $A, B \in \mathscr{A}$, define the Hausdorff metric: $\rho(A, B) = \inf\{\epsilon > 0 \mid A \subset U(B, \epsilon), B \subset U(A, \epsilon)\}$

The metric space (\mathscr{A}, ρ) is complete ; see Munkres [Mun]. Note: in $(\mathscr{A}, \rho), \lim_{n \to \infty} Conv(P_n) = \mathcal{P}$

Introduction 0000000000	Analysis of the Boundary	Topology and Fractal Structure	Conclusion
Formal Defining the IFS Φ	itions		

Let
$$P_0 = \{(0,0), (1,0), (0,1), (1,1)\}$$
. For $i \in \mathbb{N}$, we iteratively define a collection of sets $\{P_i\}$ such that $v^{(i)} \in P_i$ if and only if $v^{(i)} = \frac{1}{2}(v_1^{(i-1)} + v_2^{(i-1)})$, for some $v_1^{(i-1)}, v_2^{(i-1)} \in P_{i-1}$.

Definition

$$\Phi = \{\phi_i\}, i \ge 0, \text{ in which } \phi_i : P_i \times P_i \longrightarrow P_{i+1} \text{ is given by } \phi_i(v_1^{(i)}, v_2^{(i)}) = \frac{1}{2}(v_1^{(i)} + v_2^{(i)}).$$

Analysis of the Boundary

Topology and Fractal Structure

Conclusion

Midpoint IFS Iterations 0 - 5

Figure: Illustration of the action of ϕ_i ($0 \le i \le 4$) in a consecutive manner.

Introducti	on
000000	0000

Analysis of the Boundary

Topology and Fractal Structure

Conclusion 00

Formal Definitions Set Notations

Definition

Let the **convex hull** of P_i be $Conv(P_i)$.

Analysis of the Boundary

Topology and Fractal Structure

Conclusion 00

Formal Definitions Set Notations

Definition

Let the **convex hull** of P_i be $Conv(P_i)$.

Definition

Let B_i be the boundary of $Conv(P_i)$.

Analysis of the Boundary

Topology and Fractal Structure

Conclusion

Formal Definitions Set Notations

Definition

Let the **convex hull** of P_i be $Conv(P_i)$.

Definition

Let B_i be the boundary of $Conv(P_i)$.

Definition

Let $\mathcal{P} = \bigcap_{i=0}^{\infty} \operatorname{Conv}(P_i)$.

Analysis of the Boundary

Topology and Fractal Structure

Conclusion 00

Formal Definitions Set Notations

Definition

Let the **convex hull** of P_i be $Conv(P_i)$.

Definition

Let B_i be the boundary of $Conv(P_i)$.

Definition

Let $\mathcal{P} = \bigcap_{i=0}^{\infty} \operatorname{Conv}(P_i)$.

Definition

Let \mathcal{B} be the boundary of \mathcal{P} .

Analysis of the Boundary

Topology and Fractal Structure

Conclusion 00

Set Notations (Cont.)

Definition

The smallest closed polygon containing a set P_i is defined as the **iteration boundary**.

Analysis of the Boundary

Topology and Fractal Structure

Conclusion 00

Definition Illustrations

Convex Hull (With Boundary Shown)

Iteration Boundary

Analysis of the Boundary

Topology and Fractal Structure

Х3

Conclusion

Formal Definitions Point Classifications

Definition

If $x \in P_i \cap P_{i+1}$, then x is **immortal** $\forall i$.

Definition (Alternate)

*x*₁

If $x_1, x_2, x_3 \in P_i$ are collinear such that $x_2 = \frac{1}{2}(x_1 + x_3)$, then x_2 is immortal.

Figure: Illustration of Alternate Definition: x_2 is immortal.

Analysis of the Boundary

Topology and Fractal Structure

Conclusion

Definition of Reid Segment

Definition

A line containing two Cauchy sequences of mortal points converging to points $s_1^{(i)}$, $s_2^{(i)}$ on $Conv(P_i)$ defines a **Reid Segment** between $s_1^{(i)}$, $s_2^{(i)}$.

Conclusion

Case I and Case II.

Examination of computer modeling of the development of the IFS Φ identifies two unique, exhaustive domains which complete the iterative development of B_i 's. For ease, consider all B_i 's centered on the origin, and partition the figure such that quadrant II is the segment of focus. Let it be positioned on $[0, 1]^2$ as shown below. When we refer further to \mathcal{B} , it is segmented to this domain.

Introduction

Analysis of the Boundary

Topology and Fractal Structure

Conclusion

Case I Definition

Consider two positive vectors, v_1 and v_2 . Let a_0 be the origin of these two vectors and consider the closure of the set described by their fundamental parallelogram. We assume a_0 to be an immortal point, the point representative of v_1 , a_1 , to be mortal, and the point representative of $v_1 + v_2$, a_2 , to be immortal. Further restrict the IFS to the closed domain bounded on the right by the vector $v_1 + v_2$. These conditions define **Case I**.

Analysis of the Boundary

Topology and Fractal Structure

Conclusion 00

Case Definition (Cont.)

It is essential we assume that there exists no point at the bisection of the diagonals of the parallelogram. Since all points in any iteration set P_i must be on a square lattice, this assumption is fulfilled for our analysis.

Introduction 0000000000	Analysis of the Boundary	Topology and Fractal Structure	Conclusion 00
Case II			

Definition

Case II is defined by the existence of a mortal point, $a_1^{(k)}$, and three points collinear with each other and not with $a_1^{(k)}$. Let the three points be $a_2^{(k)}$, $a_3^{(k)}$, $a_4^{(k)}$ such that $a_2^{(k)}$ is immortal and $a_4^{(k)}$ is mortal.

(k)

$$a_{1}^{(k)}$$

After two iterations, the first **Case I** domain forms.

Evolution of ${\mathcal B}$

Proposition

The existence of Case~I implies the existence of two instances of Case~II

Proposition

The existence of **Case II** implies the existence of one instance of **Case I**.

Analysis of the Boundary

Topology and Fractal Structure

Conclusion 00

Evolution of Case I

Analysis of the Boundary

Topology and Fractal Structure

Conclusion 00

Evolution of Case I

Analysis of the Boundary

Topology and Fractal Structure

Conclusion 00

Evolution of Case I

Analysis of the Boundary

Topology and Fractal Structure

Conclusion

Evolution of Case I

The figure below demonstrates how **Case I** leads to the emergence of one Reid segment and two **Case II** domains.

Figure: Emergence of one Reid Segment.

Analysis of the Boundary

Topology and Fractal Structure

Conclusion 00

Evolution of Case I (Cont.)

Figure: Emergence of two Case II domains.

Analysis of the Boundary

Topology and Fractal Structure

Conclusion 00

Evolution of Case II

Select points $a_2^{(k)}$, $a_1^{(k+1)}$, and $a_2^{(k+1)}$. This is acceptable as $a_2^{(k)}$ and $a_1^{(k+1)}$ are immortal. These points satisfy the criteria laid out by the initial assumptions regarding **Case I**. There will arise a Reid Segment in the interior of the domain defined by these three points.

Hausdorff Measure

The Hausdorff Outer Measure is widely used when classifying fractals, and we adopt the following definition from [Briggs]:

Hausdorff Outer Measure

Let S be any subset of X, and $\delta > 0$ be a real number. We define the Hausdorff Outer Measure of dimension d bounded by δ , \mathscr{H}_{δ}^{d} by:

$$\mathscr{H}^d_{\delta}(S) = \inf\{\sum_{i=1}^{\infty} (\operatorname{diam}(U_i)^d \mid \bigcup_{i=1}^{\infty} U_i \subseteq S, \operatorname{diam}(U_i) < \delta\}.$$

If we allow δ to approach 0, then $\lim_{\delta \to 0} \mathscr{H}^d_{\delta}(S) = \mathscr{H}^d(S)$.

Hausdorff Dimension of $\mathcal B$

Numerical analysis involving the Minkowski-Bouligand box-counting method supported the conclusion that $\dim_H(\mathcal{B}) = 1$. Proving B is diffeomorphic to a circle would prove this, which our paper provides.

Hausdorff Measure of \mathcal{P}

Proposition

The set \mathcal{P} has positive Lebesgue measure.

Proof. This follows from the existence of four unique, non-collinear, immortal points in (P_n) , n > 3. There will be formed a line segment I_i between each pair of points such that for any point $x_i \in I_i$, x_i is immortal and in the limit set. It holds that the limit set has Lebesgue measure greater than zero.

Disappearing Vertices

We use the following lemma to prove propositions involving bounds on ${\cal B}$ and ${\cal P}.$

Lemma

Any point x_1 which is a vertex of $Conv(P_n)$ will not exist in P_{n+1} .

Proof. Consider a line tangent to $Conv(P_n)$ which contains x_1 . By definition, this line contains no other points in P_n . Further, no points exist above this line from P_n . Since no two points in P_n are co-linear and contain x_1 as a midpoint, x_1 will not exist in P_{n+1} .

Bound on $\mathcal B$

Proposition

The length of \mathcal{B} is bounded above by 1.545.

Proof. As $n \Rightarrow \infty$, (P_n) becomes defined through iteration by the previous lemma regarding the disappearance of vertices. By the triangle inequality, the length of $Conv(P_n + 1) \le Conv(P_n)$. The above bound is the length of (P_{14}) estimated. Further calculation can lead to further refinement.

Analysis of the Boundary

Topology and Fractal Structure

Conclusion

Bound on \mathcal{B}

Proposition

The set ${\cal B}$ is bounded by two concentric circles with radii 1/4 and $\frac{11\sqrt{2}}{64}.$

Further Bounds

Proposition

The area of \mathcal{P} is bounded above by 0.1885.

Proof. As Φ is a contraction on P_n , the previous proposition states $\pi(\frac{11\sqrt{2}}{64})^2 \leq \mathscr{H}^2(P_n) \leq \pi(\frac{1}{4})^2$. Monte Carlo estimation refines this to the above bound, with an error of ± 0.0001 .

Set Properties

We first seek to enumerate as many properties concerning the cardinality and topology of the sets R and \overline{V} as possible.

Let \mathcal{B} have the standard topology, \mathscr{T} . Let R be the set of Reid segments, each open with respect to \mathscr{T} , and V to be the set of all vertex points that arise from **Case II** domains and endpoints of Reid segments that arise from **Case I** domains. We must consider \overline{V} , i.e. the closure of V at the limit of the iterative system.

Cardinality and Topology

Theorem

The set R is countable.

Proof. Without loss of generality we demonstrate that the cardinality of Reid segments in the upper-left quadrant is countable. Let $r \in R$ be a Reid segment in this region and let $r = int\{(1 - \lambda)x_1 + \lambda x_2 \mid \lambda \in [0, 1]\}$. Consider the projection map $f: I^2 \longrightarrow I$ from R to its set of x-coordinates. The image of f is a collection of disjoint open sets, which is countable, as I is at most a countable collection of disjoint open sets.

Cardinality and Topology

Theorem

The set \overline{V} is complete.

Proof. We use the boundary's self-similarity. It suffices to show that the four Cauchy sequences uniquely bounded by any **Case I** domain and whose limit points are elements of \overline{V} . The completeness of \overline{V} follows from the convergence of these Cauchy sequences.

Analysis of the Boundary

Topology and Fractal Structure

Conclusion

Cardinality and Topology

Theorem

The set \overline{V} has no isolated points and is uncountable with respect to the boundary.

Analysis of the Boundary

Topology and Fractal Structure

Conclusion 00

Cardinality and Topology

Theorem

The set \overline{V} is nowhere dense.

Proof. $(\overline{V})^c = R$, therefore $int(\overline{V}) = \emptyset$.

Analysis of the Boundary

Topology and Fractal Structure

Conclusion 00

Cardinality and Topology

Theorem

The set \overline{V} is homeomorphic to the Cantor ternary set.

Analysis of the Boundary

Topology and Fractal Structure

Conclusion 00

Fractal Structure

39 / 48

Fractal Structure (Cont.)

Falconer's Definition of a Fractal

- F has a fine structure, i.e. detail on arbitrarily small scales.
- F is too irregular to be described in traditional geometrical language, both locally and globally.
- Often F has some form of self-similarity, perhaps approximate or statistical.
- □ Usually, the 'fractal dimension' of F (defined in some way) is greater than its topological dimension.
 - In most cases of interest F is defined in a very simple way, perhaps recursively.

Note: (4) is Mandelbrot's definition of a fractal.

Definition

Farey Sequences

A Farey sequence F_n of order n gives all rational numbers $\frac{p_n}{q_n} \in [0, 1]$ such that $q_n \leq n$.

Farey Sequences

Definition

A Farey sequence F_n of order n gives all rational numbers $\frac{p_n}{q_n} \in [0, 1]$ such that $q_n \leq n$.

It follows from the development of **Case I**'s and **Case II**'s that all rational tangent slopes exist on \mathcal{B} .

The monotonicity and rationality of the convex boundary of our system implies that the set S_n of tanget slopes of \mathcal{B} is a proper subset of F_n for any iteration n.

Analysis of the Boundary

Topology and Fractal Structure

Conclusion 00

Stern-Brocot Tree

Figure: Stern-Brocot Tree

Analysis of the Boundary

Topology and Fractal Structure

Conclusion 00

Continuity of the Derivative

Proposition

 ${\cal B}$ is a ${\cal C}^1$ function whose derivative is a 'devil's staircase-like' function.

We show in our paper that the derivative of $\ensuremath{\mathcal{B}}$ is:

- Continuous
- Exists and is positive everywhere
- Non-increasing and non-decreasing everywhere

Analysis of the Boundary

Topology and Fractal Structure

Conclusion 00

Continuity of the Derivative Sketch of Proof

Analysis of the Boundary

Topology and Fractal Structure

Conclusion 00

Continuity of the Derivative Sketch of Proof

Analysis of the Boundary

Topology and Fractal Structure

Conclusion 00

Continuity of the Derivative Sketch of Proof

Moving Forward

- $\bullet\,$ Arithmetic definition of ${\cal B}\,$
- Other dimensions
- P₀s of other shapes
- Hausdorff dimension of $\mathcal{B} \cup (\bigcup_{i=1}^{\infty} B_i)$

References

Introduction

- J. Able, D. Bradley, A. Moon. REU Final Presentation (2014).
- K. Falconer. Fractal Geometry : Mathematical Foundations and Applications. Wiley. (1990).
- R. S. Strichartz, A. Taylor and T. Zhang, Densities of self-similar measures on the line, Experimental Math. 4 (1995), 101–128. MR 97c:28014
- A. H. Schoenfeld *Continuous Surjections from Cantor Sets to Compact Metric Spaces.* Proceedings of the American Mathematical Society 16. (1974).
- W. A. Sutherland *Introduction to Metric and Topological* Spaces. Oxfor. (1975).