A Geometric and Analytic Examination of a Midpoint Iterative Function System

J. Foster¹ S. Moore² A. Somers³

¹Washington University in St. Louis

 2 The University of Alabama 3 Missouri State University

Missouri State University REU, 2018

Outline

[Introduction](#page-2-0)

- [The Midpoint Iterative Function System \(IFS\)](#page-2-0)
- **o** [Definitions](#page-5-0)

2 [Analysis of the Boundary](#page-16-0)

- [The Geometric Progression of the IFS](#page-16-0)
- [Bounds on](#page-28-0) P and B

3 [Topology and Fractal Structure](#page-35-0)

- **[Topological Analysis](#page-35-0)**
- [Farey Sequences and the Stern-Brocot Tree](#page-43-0)
- **[The Derivative](#page-46-0)**

[Conclusion](#page-50-0)

- 1. Consider the set P_0 consisting of the vertices of the unit square: $(0,0)$, $(0,1)$, $(1,0)$, $(1,1)$.
- 2. Generate the midpoint of every pair of points in P_0 and consider this set of midpoints to be the first iteration, P_1 .
- 3. Repeat from P_n to P_{n+1}

Simple Definition

Iterations 0 - 7 (Outer Ring)

Iteration 10

Let I be the unit interval and let $I^2 := I \times I$. Let $\mathscr{A}=\{A\subset I^2\mid~A~\text{is compact}\}.$ For $A\in\mathscr{A}$, and $\epsilon>0,$ let $~\mathcal{U}(A,\epsilon)$ be the ϵ -neighborhood of A.

Definition

For $A, B \in \mathcal{A}$, define the Hausdorff metric: $\rho(A, B) = \inf \{ \epsilon > 0 \mid A \subset U(B, \epsilon), B \subset U(A, \epsilon) \}$

The metric space (\mathscr{A}, ρ) is complete; see Munkres [Mun]. Note: in $({\mathscr{A}}, \rho)$, lim_{n→∞} Conv(P_n) = P

Let
$$
P_0 = \{(0,0), (1,0), (0,1), (1,1)\}
$$
. For $i \in \mathbb{N}$, we iteratively define a collection of sets $\{P_i\}$ such that $v^{(i)} \in P_i$ if and only if $v^{(i)} = \frac{1}{2}(v_1^{(i-1)} + v_2^{(i-1)})$, for some $v_1^{(i-1)}$, $v_2^{(i-1)} \in P_{i-1}$.

$$
\Phi = \{\phi_i\}, i \ge 0, \text{ in which } \phi_i : P_i \times P_i \longrightarrow P_{i+1} \text{ is given by}
$$

$$
\phi_i(v_1^{(i)}, v_2^{(i)}) = \frac{1}{2}(v_1^{(i)} + v_2^{(i)}).
$$

 P_3 P_4 P_5

Figure: Illustration of the action of ϕ_i ($0 \le i \le 4$) in a consecutive manner.

Let the **convex hull** of P_i be $Conv(P_i)$.

Let the **convex hull** of P_i be $Conv(P_i)$.

Definition

Let B_i be the boundary of Conv (P_i) .

Let the **convex hull** of P_i be Conv(P_i).

Definition

Let B_i be the boundary of Conv (P_i) .

Definition

Let $P = \bigcap_{i=0}^{\infty} \text{Conv}(P_i)$.

Let the **convex hull** of P_i be Conv(P_i).

Definition

Let B_i be the boundary of Conv (P_i) .

Definition

Let $P = \bigcap_{i=0}^{\infty} \text{Conv}(P_i)$.

Definition

Let B be the boundary of P .

Set Notations (Cont.)

Definition

The smallest closed polygon containing a set P_i is defined as the iteration boundary.

Definition Illustrations

(With Boundary Shown)

Iteration Boundary

If $x \in P_i \cap P_{i+1}$, then x is **immortal** $\forall i$.

Definition (Alternate)

If x_1 , x_2 , $x_3 \in P_i$ are collinear such that $x_2 = \frac{1}{2}$ $\frac{1}{2}(x_1 + x_3)$, then x_2 is immortal.

Figure: Illustration of Alternate Definition: x_2 is immortal.

 x_1 x_2 x_3

Definition of Reid Segment

Definition

A line containing two Cauchy sequences of mortal points converging to points $s_1^{(i)}$ $s_1^{(i)}, s_2^{(i)}$ $2^{(1)}$ on Conv (P_i) defines a **Reid** Segment between $s_1^{(i)}$ $s_1^{(i)}, s_2^{(i)}$ $2^{(1)}$.

 \circ

Case I and Case II.

Examination of computer modeling of the development of the IFS Φ identifies two unique, exhaustive domains which complete the iterative development of B_i 's. For ease, consider all B_i 's centered on the origin, and partition the figure such that quadrant II is the segment of focus. Let it be positioned on $[0,1]^2$ as shown below. When we refer further to β , it is segmented to this domain.

Consider two positive vectors, v_1 and v_2 . Let a_0 be the origin of these two vectors and consider the closure of the set described by their fundamental parallelogram. We assume a_0 to be an immortal point, the point representative of v_1 , a_1 , to be mortal, and the point representative of $v_1 + v_2$, a_2 , to be immortal. Further restrict the IFS to the closed domain bounded on the right by the vector $v_1 + v_2$. These conditions define Case I.

Case I Definition (Cont.)

> It is essential we assume that there exists no point at the bisection of the diagonals of the parallelogram. Since all points in any iteration set P_i must be on a square lattice, this assumption is fulfilled for our analysis.

Case II is defined by the existence of a mortal point, $a_1^{(k)}$ $\binom{n}{1}$, and three points collinear with each other and not with $a_1^{(k)}$. Let the 1 three points be $a_2^{(k)}$ $\binom{k}{2}$, $a_3^{(k)}$ $\binom{k}{3}$, $a_4^{(k)}$ $\binom{k}{4}$ such that $a_2^{(k)}$ $\binom{k}{2}$ is immortal and $a_4^{(k)}$ 4 is mortal.

> $a_1^{(k)}$ 1

> > $a_3^{(k)}$ 3

 $a_2^{(k)}$ 2

$$
\overset{a_4^{(k)}}{\circ}
$$

After two iterations, the first Case I domain forms.

Evolution of B

Proposition

The existence of Case I implies the existence of two instances of Case II

Proposition

The existence of Case II implies the existence of one instance of Case I.

Evolution of Case I

Evolution of Case I

Evolution of Case I

Evolution of Case I

The figure below demonstrates how Case I leads to the emergence of one Reid segment and two Case II domains.

Figure: Emergence of one Reid Segment.

Figure: Emergence of two Case II domains.

00000000000

[Introduction](#page-2-0) [Analysis of the Boundary](#page-16-0) [Topology and Fractal Structure](#page-35-0) [Conclusion](#page-50-0)

 \circ

Evolution of Case II

Select points $a_2^{(k)}$ $\binom{k}{2}$, $a_1^{(k+1)}$ $1^{(k+1)}$, and $a_2^{(k+1)}$ $\binom{(k+1)}{2}$. This is acceptable as $a_2^{(k)}$ 2 and $a_1^{(k+1)}$ $1^{(k+1)}$ are immortal. These points satisfy the criteria laid out by the initial assumptions regarding Case I. There will arise a Reid Segment in the interior of the domain defined by these three points.

Hausdorff Measure

The Hausdorff Outer Measure is widely used when classifying fractals, and we adopt the following definition from [Briggs]:

Hausdorff Outer Measure

Let S be any subset of X, and $\delta > 0$ be a real number. We define the Hausdorff Outer Measure of dimension d bounded by δ , $\mathscr{H}_{\delta}^{\mathcal{d}}$ by:

$$
\mathscr{H}_{\delta}^d(S) = \inf \{ \sum_{i=1}^{\infty} (\text{diam}(U_i)^d \mid \bigcup_{i=1}^{\infty} U_i \subseteq S, \text{diam}(U_i) < \delta \}.
$$

If we allow δ to approach 0, then $\lim_{\delta\to 0}\mathscr{H}^{d}_\delta(S)=\mathscr{H}^{d}(S).$

 \circ

Hausdorff Dimension of β

Numerical analysis involving the Minkowski-Bouligand box-counting method supported the conclusion that dim $H(B) = 1$. Proving B is diffeomorphic to a circle would prove this, which our paper provides.

Hausdorff Measure of P

Proposition

The set P has positive Lebesgue measure.

Proof. This follows from the existence of four unique, non-collinear, immortal points in (P_n) , $n > 3$. There will be formed a line segment l_i between each pair of points such that for any point $x_i \in I_i$, x_i is immortal and in the limit set. It holds that the limit set has Lebesgue measure greater than zero.

Disappearing Vertices

We use the following lemma to prove propositions involving bounds on β and \mathcal{P} .

Lemma

Any point x_1 which is a vertex of Conv(P_n) will not exist in P_{n+1} .

Proof. Consider a line tangent to Conv(P_n) which contains x_1 . By definition, this line contains no other points in P_n . Further, no points exist above this line from P_n . Since no two points in P_n are co-linear and contain x_1 as a midpoint, x_1 will not exist in P_{n+1} .

Bound on B

Proposition

The length of β is bounded above by 1.545.

Proof. As n $\Rightarrow \infty$, (P_n) becomes defined through iteration by the previous lemma regarding the disappearance of vertices. By the triangle inequality, the length of $Conv(P_n + 1) \leq Conv(P_n)$. The above bound is the length of (P_{14}) estimated. Further calculation can lead to further refinement.

Proposition

The set β is bounded by two concentric circles with radii 1/4 and $\frac{11\sqrt{2}}{64}$.

Further Bounds

Proposition

The area of P is bounded above by 0.1885.

Proof. As Φ is a contraction on P_n , the previous proposition states $\pi(\frac{11\sqrt{2}}{64})^2 \leq \mathcal{H}^2(P_n) \leq \pi(\frac{1}{4})^2$ $\frac{1}{4}$)². Monte Carlo estimation refines this to the above bound, with an error of ± 0.0001 .

Set Properties

We first seek to enumerate as many properties concerning the cardinality and topology of the sets R and \overline{V} as possible.

Let B have the standard topology, \mathscr{T} . Let R be the set of Reid segments, each open with respect to $\mathscr T$, and V to be the set of all vertex points that arise from Case II domains and endpoints of Reid segments that arise from Case I domains. We must consider \overline{V} . i.e. the closure of V at the limit of the iterative system.

Cardinality and Topology

Theorem

The set R is countable.

Proof. Without loss of generality we demonstrate that the cardinality of Reid segments in the upper-left quadrant is countable. Let $r \in R$ be a Reid segment in this region and let $r = \text{int}\{(1 - \lambda)x_1 + \lambda x_2 \mid \lambda \in [0, 1]\}$. Consider the projection map $f: I^2 \longrightarrow I$ from R to its set of x-coordinates. The image of f is a collection of disjoint open sets, which is countable, as I is at most a countable collection of disjoint open sets.

Cardinality and Topology

Theorem

The set \overline{V} is complete.

Proof. We use the boundary's self-similarity. It suffices to show that the four Cauchy sequences uniquely bounded by any Case I domain and whose limit points are elements of \overline{V} . The completeness of \overline{V} follows from the convergence of these Cauchy sequences.

Cardinality and Topology

Theorem

The set \overline{V} has no isolated points and is uncountable with respect to the boundary.

Theorem

The set \overline{V} is nowhere dense.

Proof. $(\overline{V})^c = R$, therefore $\text{int}(\overline{V}) = \emptyset$.

Cardinality and Topology

Theorem

The set \overline{V} is homeomorphic to the Cantor ternary set.

Fractal Structure

39 / 48

Fractal Structure (Cont.)

Falconer's Definition of a Fractal

- \blacksquare F has a fine structure, i.e. detail on arbitrarily small scales.
- \blacksquare F is too irregular to be described in traditional geometrical language, both locally and globally.
- Often F has some form of self-similarity, perhaps approximate or statistical.
- \Box Usually, the 'fractal dimension' of F (defined in some way) is greater than its topological dimension.
- In most cases of interest F is defined in a very simple way, perhaps recursively.

Note: (4) is **Mandelbrot**'s definition of a fractal.

Farey Sequences

Definition

A Farey sequence F_n of order n gives all rational numbers p_n $\frac{p_n}{q_n} \in [0,1]$ such that $q_n \leq n$.

Farey Sequences

Definition

A **Farey sequence** F_n of order *n* gives all rational numbers p_n $\frac{p_n}{q_n} \in [0,1]$ such that $q_n \leq n$.

It follows from the development of Case I's and Case II's that all rational tangent slopes exist on β .

The monotonicity and rationality of the convex boundary of our system implies that the set S_n of tanget slopes of β is a proper subset of F_n for any iteration n.

Stern-Brocot Tree

Figure: Stern-Brocot Tree

00000000000

[Introduction](#page-2-0) [Analysis of the Boundary](#page-16-0) [Topology and Fractal Structure](#page-35-0) [Conclusion](#page-50-0)

 \circ

Continuity of the Derivative

Proposition

 ${\cal B}$ is a ${\cal C}^1$ function whose derivative is a 'devil's staircase-like' function.

We show in our paper that the derivative of β is:

- **Continuous**
- Exists and is positive everywhere
- Non-increasing and non-decreasing everywhere

Continuity of the Derivative Sketch of Proof

Continuity of the Derivative Sketch of Proof

Continuity of the Derivative Sketch of Proof

Moving Forward

- Arithmetic definition of β
- Other dimensions
- \bullet P_0 s of other shapes
- Hausdorff dimension of $\mathcal{B}\cup (\bigcup_{i=1}^\infty B_i)$

References

- J. Able, D. Bradley, A. Moon. REU Final Presentation (2014).
- K. Falconer. Fractal Geometry : Mathematical Foundations and Applications. Wiley. (1990).
- R. S. Strichartz, A. Taylor and T. Zhang, Densities of self–similar measures on the line, Experimental Math. 4 (1995), 101–128. MR 97c:28014
- A. H. Schoenfeld Continuous Surjections from Cantor Sets to Compact Metric Spaces. Proceedings of the American Mathematical Society 16. (1974).
- W. A. Sutherland Introduction to Metric and Topological Spaces. Oxfor. (1975).