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The Midpoint Process
Simple Definition

1. Consider the set P0 consisting of the vertices of the unit
square: (0,0),(0,1),(1,0),(1,1).

2. Generate the midpoint of every pair of points in P0 and
consider this set of midpoints to be the first iteration, P1.

3. Repeat from Pn to Pn+1
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Iterations 0 - 7 (Outer Ring)
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Iteration 10
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Formal Definitions
A and the Metric Space

Let I be the unit interval and let I 2 := I × I . Let
A = {A ⊂ I 2 | A is compact}. For A ∈ A , and ε > 0, let U(A, ε)
be the ε-neighborhood of A.

Definition

For A,B ∈ A , define the Hausdorff metric:
ρ(A,B) = inf{ε > 0 | A ⊂ U(B, ε), B ⊂ U(A, ε)}

The metric space (A , ρ) is complete ; see Munkres [Mun]. Note:
in (A , ρ), limn→∞ Conv(Pn) = P
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Formal Definitions
Defining the IFS Φ

Let P0 = {(0, 0), (1, 0), (0, 1), (1, 1)}. For i ∈ N, we iteratively
define a collection of sets {Pi} such that v (i) ∈ Pi if and only if

v (i) = 1
2(v

(i−1)
1 + v

(i−1)
2 ), for some v

(i−1)
1 , v

(i−1)
2 ∈ Pi−1.

Definition

Φ = {φi}, i ≥ 0, in which φi : Pi × Pi −→ Pi+1 is given by

φi (v
(i)
1 , v

(i)
2 ) = 1

2(v
(i)
1 + v

(i)
2 ).
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Midpoint IFS Iterations 0 - 5

φ0 φ1

φ4φ3

P0 P1 P2

P3 P4 P5

Figure: Illustration of the action of φi (0 ≤ i ≤ 4) in a consecutive
manner.
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Formal Definitions
Set Notations

Definition

Let the convex hull of Pi be Conv(Pi ).

Definition

Let Bi be the boundary of Conv(Pi ).

Definition

Let P =
⋂∞

i=0Conv(Pi ).

Definition

Let B be the boundary of P.
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Set Notations (Cont.)

Definition

The smallest closed polygon containing a set Pi is defined as the
iteration boundary.
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Definition Illustrations
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Formal Definitions
Point Classifications

Definition

If x ∈ Pi ∩ Pi+1, then x is immortal ∀i .

Definition (Alternate)

If x1, x2, x3 ∈ Pi are collinear such that x2 = 1
2(x1 + x3), then x2 is

immortal.

x1 x2 x3

Figure: Illustration of Alternate Definition: x2 is immortal.
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Definition of Reid Segment

Definition

A line containing two Cauchy sequences of mortal points

converging to points s
(i)
1 , s

(i)
2 on Conv(Pi ) defines a Reid

Segment between s
(i)
1 , s

(i)
2 .
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Case I and Case II.

Examination of computer modeling of the development of the IFS
Φ identifies two unique, exhaustive domains which complete the
iterative development of Bi ’s. For ease, consider all Bi ’s centered
on the origin, and partition the figure such that quadrant II is the
segment of focus. Let it be positioned on [0, 1]2 as shown below.
When we refer further to B, it is segmented to this domain.
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Case I
Definition

Consider two positive vectors, v1 and v2. Let a0 be the origin of
these two vectors and consider the closure of the set described by
their fundamental parallelogram. We assume a0 to be an immortal
point, the point representative of v1, a1, to be mortal, and the
point representative of v1 + v2, a2, to be immortal. Further restrict
the IFS to the closed domain bounded on the right by the vector
v1 + v2. These conditions define Case I.
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Case I
Definition (Cont.)

It is essential we assume that there exists no point at the bisection
of the diagonals of the parallelogram. Since all points in any
iteration set Pi must be on a square lattice, this assumption is
fulfilled for our analysis.
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Case II
Definition

Case II is defined by the existence of a mortal point, a
(k)
1 , and

three points collinear with each other and not with a
(k)
1 . Let the

three points be a
(k)
2 , a

(k)
3 , a

(k)
4 such that a

(k)
2 is immortal and a

(k)
4

is mortal.

a
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4
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1
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Case I

After two iterations, the first Case I domain forms.

φ0, φ1
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Evolution of B

Proposition

The existence of Case I implies the existence of two instances of
Case II

Proposition

The existence of Case II implies the existence of one instance of
Case I.
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Evolution of Case I
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Evolution of Case I
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Evolution of Case I
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Evolution of Case I

The figure below demonstrates how Case I leads to the emergence
of one Reid segment and two Case II domains.

Figure: Emergence of one Reid Segment.
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Evolution of Case I (Cont.)

Figure: Emergence of two Case II domains.
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Evolution of Case II

Select points a
(k)
2 , a

(k+1)
1 , and a

(k+1)
2 . This is acceptable as a

(k)
2

and a
(k+1)
1 are immortal. These points satisfy the criteria laid out

by the initial assumptions regarding Case I. There will arise a Reid
Segment in the interior of the domain defined by these three points.
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Hausdorff Measure

The Hausdorff Outer Measure is widely used when classifying
fractals, and we adopt the following definition from [Briggs]:

Hausdorff Outer Measure

Let S be any subset of X , and δ > 0 be a real number. We define
the Hausdorff Outer Measure of dimension d bounded by δ, H d

δ

by:

H d
δ (S) = inf{

∑∞
i=1(diam(Ui )

d |
⋃∞

i=1 Ui ⊆ S ,diam(Ui ) < δ}.

If we allow δ to approach 0, then limδ→0 H d
δ (S) = H d(S).
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Hausdorff Dimension of B

Numerical analysis involving the Minkowski-Bouligand
box-counting method supported the conclusion that dimH(B) = 1.
Proving B is diffeomorphic to a circle would prove this, which our
paper provides.
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Hausdorff Measure of P

Proposition

The set P has positive Lebesgue measure.

Proof. This follows from the existence of four unique,
non-collinear, immortal points in (Pn), n > 3. There will be formed
a line segment li between each pair of points such that for any
point xi ∈li , xi is immortal and in the limit set. It holds that the
limit set has Lebesgue measure greater than zero.
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Disappearing Vertices

We use the following lemma to prove propositions involving bounds
on B and P.

Lemma

Any point x1 which is a vertex of Conv(Pn) will not exist in Pn+1.

Proof. Consider a line tangent to Conv(Pn) which contains x1. By
definition, this line contains no other points in Pn. Further, no
points exist above this line from Pn. Since no two points in Pn are
co-linear and contain x1 as a midpoint, x1 will not exist in Pn+1.
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Bound on B

Proposition

The length of B is bounded above by 1.545.

Proof. As n ⇒∞, (Pn) becomes defined through iteration by the
previous lemma regarding the disappearance of vertices. By the
triangle inequality, the length of Conv(Pn + 1) ≤ Conv(Pn). The
above bound is the length of (P14) estimated. Further calculation
can lead to further refinement.
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Bound on B

Proposition

The set B is bounded by two concentric circles with radii 1/4 and
11
√
2

64 .
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Further Bounds

Proposition

The area of P is bounded above by 0.1885.

Proof. As Φ is a contraction on Pn, the previous proposition states

π(11
√
2

64 )2 ≤H 2(Pn) ≤ π(14)2. Monte Carlo estimation refines this
to the above bound, with an error of ±0.0001.

32 / 48



Introduction Analysis of the Boundary Topology and Fractal Structure Conclusion

Set Properties

We first seek to enumerate as many properties concerning the
cardinality and topology of the sets R and V as possible.

Let B have the standard topology, T . Let R be the set of Reid
segments, each open with respect to T , and V to be the set of all
vertex points that arise from Case II domains and endpoints of
Reid segments that arise from Case I domains. We must consider
V , i.e. the closure of V at the limit of the iterative system.
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Cardinality and Topology

Theorem

The set R is countable.

Proof. Without loss of generality we demonstrate that the
cardinality of Reid segments in the upper-left quadrant is
countable. Let r ∈ R be a Reid segment in this region and let
r = int{(1− λ)x1 + λx2 | λ ∈ [0, 1]}. Consider the projection map
f : I 2 −→ I from R to its set of x-coordinates. The image of f is a
collection of disjoint open sets, which is countable, as I is at most
a countable collection of disjoint open sets.
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Cardinality and Topology

Theorem

The set V is complete.

Proof. We use the boundary’s self-similarity. It suffices to show
that the four Cauchy sequences uniquely bounded by any Case I
domain and whose limit points are elements of V . The
completeness of V follows from the convergence of these Cauchy
sequences.
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Cardinality and Topology

Theorem

The set V has no isolated points and is uncountable with respect
to the boundary.
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Cardinality and Topology

Theorem

The set V is nowhere dense.

Proof. (V )c = R, therefore int(V ) = ∅.
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Cardinality and Topology

Theorem

The set V is homeomorphic to the Cantor ternary set.
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Fractal Structure

Figure: Stern-Brocot Tree
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Fractal Structure (Cont.)

Falconer’s Definition of a Fractal

� F has a fine structure, i.e. detail on arbitrarily small scales.

� F is too irregular to be described in traditional geometrical
language, both locally and globally.

� Often F has some form of self-similarity, perhaps approximate
or statistical.

� Usually, the ’fractal dimension’ of F (defined in some way) is
greater than its topological dimension.

� In most cases of interest F is defined in a very simple way,
perhaps recursively.

Note: (4) is Mandelbrot’s definition of a fractal.
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Farey Sequences

Definition

A Farey sequence Fn of order n gives all rational numbers
pn
qn
∈ [0, 1] such that qn ≤ n.

It follows from the development of Case I’s and Case II’s that all
rational tangent slopes exist on B.
The monotonicity and rationality of the convex boundary of our
system implies that the set Sn of tanget slopes of B is a proper
subset of Fn for any iteration n.
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Stern-Brocot Tree

Figure: Stern-Brocot Tree
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Continuity of the Derivative

Proposition

B is a C1 function whose derivative is a ’devil’s staircase-like’
function.

We show in our paper that the derivative of B is:

Continuous

Exists and is positive everywhere

Non-increasing and non-decreasing everywhere
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Continuity of the Derivative
Sketch of Proof
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Moving Forward

Arithmetic definition of B
Other dimensions

P0s of other shapes

Hausdorff dimension of B ∪ (
⋃∞

i=1 Bi )
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