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The Zika Virus (ZIKV)

• Spread in three ways:
• Human → human (horizontal transmission)
• Mother → fetus (vertical transmission)
• Mosquito → human (vector transmission)

• The transmission from mother to fetus can cause certain birth
defects, specifically microcephaly.

• In the past 10 years, there have been outbreaks in the
Americas. Most research on the disease comes from Brazil.

• There is a lack of data on the transmission of Zika, so there
are not a lot of mathematical models available for the disease.



Why Are We Studying These Models?

• Previous REU students researched and analyzed a model of
the Zika virus that included vector transmission and horizontal
transmission.

• Other models, including the one we studied, differ because
they include only vector transmission and vertical
transmission, but not horizontal transmission. We improved
upon the model by combining all three types of transmission
into a generalized model.



Model from Agusto et al.
The Variables

SB(t), SW (t) = Susceptible newly born babies and adults

EB(t),EW (t) = Exposed newly born babies and adults

AB(t),AW (t) = Asymptomatic newly born babies and adults

IB(t), IW (t) = Infectious symptomatic newly born babies without microcephaly and adults

IBM(t), IWM(t) = Microcephalic newly born babies and adults

RB(t),RW (t) = Recovered newly born babies and adults

SV (t) = Susceptible female mosquitoes

EV (t) = Exposed female mosquitoes

IV (t) = Infected female mosquitoes



Model from Agusto et al.
The Parameters

πB = Birth rate

p = Fraction of adults and newly born babies who are asymptomatic

1− p = Remaining fraction of adults and newly born babies who are infectious

α = Maturation rate

r , qA, qI , qR = Fractions of newly born babies who are infected and have microcephaly

1− r = Remaining fraction of newly born babies who have microcephaly

η = Modification parameter

βW , βB = Transmission probability per contact of adults and newly born babies

ρW , ρB = Infectivity modification parameters in asymptomatic adults and newly born babies

σW , σB = Progression rate of exposed adults and newly born babies

γW , γB = Recovery rate of asymptomatic and symptomatic adults and newly born babies

µw , µB = Natural death rate of adults and newly born babies

πV = Recruitment rate of mosquitoes

βV = Transmission probability per contact of susceptible mosquitoes

bV = Mosquito biting rate

σV = Progression rate of exposed mosquitoes

µV = Natural death rate of mosquitoes



Model from Agusto et al.
Flow Chart of the Model



Model from Agusto et al.
The Model

S ′B(t) = πB − qAπBAW (t)− qIπB IW (t)− qRπBRW (t)− λB(IV ,NB)SB(t)− (α + µB)SB(t)

E ′B(t) = λB(IV ,NB)SB(t)− (α + σB + µB)EB(t)

A′B(t) = qAπBAW (t) + (1− p)σBEB(t)− (α + γB + µB)AB(t)

I ′B(t) = qIπB IW (t) + pσBEB(t)− (α + γB + µB)IB(t)

I ′BM(t) = rqRπBRW (t)− (α + µB)IBM(t)

R ′B(t) = (1− r)qRπBRW (t) + γBAB(t) + γB IB(t)− (α + µB)RB(t)

S ′W (t) = αSB(t)− λW (IV ,NW )SW (t)− µWSW (t)

E ′W (t) = λW (IV ,NW )SW (t)− (σW + µW )EW (t)

A′W (t) = (1− p)σWEW (t)− (γW + µW )AW (t)

I ′W (t) = pσWEW (t)− (γW + µW )IW (t)

I ′WM(t) = αIBM(t)− µW IWM(t)

R ′W (t) = αRB(t) + γWAW (t) + γW IW (t)− µWRW (t)

S ′V (t) = πV − λV (AB , IB ,AW , IW ,NB ,NW )SV (t)− µvSV (t)

E ′V (t) = λV (AB , IB ,AW , IW ,NB ,NW )SV (t)− (µV + σV )EV (t)

I ′V (t) = σVEV (t)− µV IV (t)



Model from Agusto et al.
The Model

With

λB(IV ,NB) =
ηβBbV IV

NB

λW (IV ,NW ) =
βW bV IV

NW

λV (AB , IB ,AW , IW ,NB ,NW ) = βV bV (
IW + ρWAW + η(IB + ρBAB)

NW + ηNB
)

NB = SB + EB + AB + IB + IBM + RB

NW = SW + EW + AW + IW + IWM + RW

NV = SV + EV + IV

NH = NB + NW

where the total populations NH and NV are constant.



Dynamical Systems

Finding explicit solutions of this kind of system is impossible. The
goal in dynamical systems is to understand the qualitative behavior
of solutions even if they are not available, and to provide rigorous
results on the main properties of the system, including:

• Existence of attracting sets

• Stability properties

• Bifurcations

• Chaos

• Asymptotic Analysis



Equilibrium Points and Stability

Definition

Consider the system x ′ = f (x) (f : Rn → Rn). There will exist an
equilibrium point when x ′ = 0.

Local vs. Global Stability

• Local stability analyzes the stability in a neighborhood around
the equilibrium point.
• Linearization at the equilibrium point.

• Global stability describes the stability around a larger set
containing the equilibrium point, and global stability implies
local stability.
• Lyapunov functions allow the proof of global stability at the

equilibrium point.



Feasible Region

Definition

A set S ⊂ Rn is said to be positively invariant with respect to
x ′ = f (x) if x(0) ∈ S =⇒ x(t) ∈ S for all t ≥ 0.

We next prove that the feasible region, Γ = ΓH × ΓV ⊂ R12
+ × R3

+ with

ΓH = {SB ,EB ,AB , IB , IBM ,RB ,SW ,EW ,AW , IW , IWM ,RW : NH ≤
πB
µH

+SH(0)}

ΓV = {SV ,EV , IV : NV ≤
πV
µV

+ NV (0)}

is positively invariant where we assume SV ≤ So
V .

Note: This region is less restrictive than the one given in Agusto et al.



Feasible Region

Adding the first twelve equations and the last three equations of
the model, we obtain
N ′H(t) = πB − µBNB(t)− µWNW (t)− α(EB(t) + AB(t) + IB(t))
and N ′V (t) = πV − µVNV (t), respectively.

Furthermore, to show that Γ is positively invariant, we use the
following inequalities:

N ′H(t) ≤ πB − µHNH(t)

N ′V (t) = πV − µVNV (t)

Where µH = min{µB , µW }



Feasible Region

Now, consider:

Ñ ′H(t) = πB − µHNH(t)

ÑH(t) =
πB
µH

[
1− e−µH t

]
+ ÑH(0)e−µH t

ÑH(0) = NH(0)

Using theorem 6.1 from Hale, we get the following differential
inequality,

NH(t) ≤ πB
µH

[
1− e−µH t

]
+ ÑH(0)e−µH t

NH(t) ≤ πB
µH

+ NH(0), for t ≥ 0



Finding Equilibrium Points

To solve our system f (x) = 0, we begin with the equation
R ′W (t) = αRB(t) + γWAW (t) + γW IW (t)− µWRW (t).

It makes biological sense that γW (AW (t) + IW (t)) > µWRW (t) for t ≥ 0.

Considering γW > 0, µW > 0, AW (t) ≥ 0, IW (t) ≥ 0, and RW (t) ≥ 0, we
see that:

γWAW + γW IW − µWRW > 0.

Then setting the initial R ′W equation equal to zero shows that αRB(t) = 0,
and therefore that Ro

B = 0.



Finding the Disease Free Equilibrium

Following the same procedure, we get the following:

From Equation We See That

R ′W (t) = 0 Ro
B = 0, Ro

W = 0, Ao
W = 0, I oW = 0

R ′B(t) = 0 Ao
B = 0, I oB = 0

A′B(t) = 0 E o
B = 0

I ′BM(t) = 0 I oBM = 0

I ′WM(t) = 0 I oWM = 0

E ′V (t) = 0 E o
V = 0

I ′V (t) = 0 I oV = 0

A′W (t) = 0 E o
W = 0

S ′V (t) = 0 So
V =

πV
µV

S ′B(t) = 0 So
B =

πB
α + µB

S ′W (t) = 0 So
W =

απB
µW (α + µB)



Finding the Disease Free Equilibrium

Therefore, the only equilibrium point of the original model is the disease free
equilibrium (E0) where

E0 = (So
B ,E

o
B ,A

o
B , I

o
B , I

o
BM ,R

o
B , S

o
W ,E

o
W ,A

o
W , I

o
W , I

o
WM ,R

o
W , S

o
V ,E

o
V , I

o
V )

Or, more specifically,

E0 =

(
πB

α + µB
, 0, 0, 0, 0, 0,

απB
µW (α + µB)

, 0, 0, 0, 0, 0,
πV
µV

, 0, 0

)

Therefore, the disease free equilibrium (E0) is the only equilibrium point
of the system (unique), and no endemic equilibrium point exists.



Global Asymptotic Stability
Compartmentalization

Analyzing the global asymptotic stability (GAS) of the DFE

We approach the model as done by Shuai et al. We split the variables of the
model into two compartments: a disease compartment x ∈ R10 and a disease
free compartment y ∈ R5, in the form:

x =



EB

AB

IB
IBM
EW

AW

IW
IWM

EV

IV


and y =


SB
RB

SW
RW

SV



where

x ′ = F(x , y)− V(x , y) y ′ = g(x , y)



Global Asymptotic Stability
The F and V matrices

We define two vectors ∈ R10, F and V, which will be created from
the diseased compartment (the vector x) such that

F =



ηβBbV IV (t)

NB (t)
SB (t)

0

0

rqRπBRW (t)

βW bV IV (t)

NW (t)
SW (t)

0

0

0

βV bV (
IW +ρW AW +η(IB+ρBAB )

NW +ηNB
)SV (t)

0



V =



(α + σB + µB )EB (t)

(α + γB + µB )AB (t)− qAπBAW (t)− (1− p)σBEB (t)

(α + γB + µB )IB (t)− qIπB IW (t)− pσBEB (t)

(α + µB )IBM (t)

(σW + µW )EW (t)

(γW + µW )AW (t)− (1− p)σW EW (t)

(γW + µW )IW (t)− pσW EW (t)

µW IWM (t)− αIBM (t)

(µV + σV )EV (t)

µV IV (t)− σV EV (t)



Where F contains the terms that contribute to new infection, and
V contains the terms that contribute to recovery and death.



Global Asymptotic Stability
Finding F and V

We then define two 10× 10 matrices F and V , such that

F =

[
∂Fi
∂xj

(0, y0)(E0)

]
and V =

[
∂Vi
∂xj

(0, y0)(E0)

]

Where E0 is the DFE

E0 =

(
πB

α + µB
, 0, 0, 0, 0, 0,

απB
µW (α + µB)

, 0, 0, 0, 0, 0,
πV
µV

, 0, 0

)

and

y0 = (So
B ,R

o
B ,S

o
W ,R

o
W ,S

o
V ) =

(
πB

α + µB
, 0,

απB
µW (α + µB)

, 0,
πV
µV

)



Global Asymptotic Stability
The F Matrix

F =



0 0 0 0 0 0 0 0 0
ηβBbVS

o
B

No
B

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
βW bVS

o
W

No
W

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0
ηβV bV ρBS

o
V

So
W + ηSo

B

ηβV bVS
o
V

So
W + ηSo

B

0 0
ρWβV bVS

o
V

So
W + ηSo

B

βV bVS
o
V

So
W + ηSo

B

0 0 0

0 0 0 0 0 0 0 0 0 0





Global Asymptotic Stability
The V Matrix

V =



α + σB + µB 0 0 0 0 0 0 0 0 0

−(1− p)σB α + γB + µB 0 0 0 −qAπB 0 0 0 0

−pσB 0 α + γB + µB 0 0 0 −qIπB 0 0 0

0 0 0 α + µB 0 0 0 0 0 0

0 0 0 0 σW + µW 0 0 0 0 0

0 0 0 0 (1− p)σW γW + µW 0 0 0 0

0 0 0 0 −pσW 0 γW + µW 0 0 0

0 0 0 −α 0 0 0 µW 0 0

0 0 0 0 0 0 0 0 µV + σV 0

0 0 0 0 0 0 0 0 −σV µV





Global Asymptotic Stability
The V−1 Matrix

V−1 =



1

k1
0 0 0 0 0 0 0 0 0

σB(1− p)

k1k2

1

k2
0 0

πBqAσW (1− p)

k1k4k5

πBqA
k2k5

0 0 0 0

πBσB
k1k2

0
1

k2
0

pσBqIσW
k2k4k5

0
πBqI
k2k5

0 0 0

0 0 0
1

k3
0 0 0 0 0 0

0 0 0 0
1

k4
0 0 0 0 0

0 0 0 0
σW (1− p)

k4k5

1

k5
0 0 0 0

0 0 0 0
pσW
k4k5

0
1

k5
0 0 0

0 0 0
α

µW k3
0 0 0

1

µW
0 0

0 0 0 0 0 0 0 0
1

k6
0

0 0 0 0 0 0 0 0
σV
µV k6

1

µv


where

k1 = α + σB + µB , k2 = α + γB + µB , k3 = α + µB , k4 = σW + µW , k5 = γW + µW , k6 = µV + σV



Global Asymptotic Stability
Definition of the Next Generation Matrix

Definition

Assume that F ≥ 0 and V−1 ≥ 0, which is biologically reasonable.
Then the next-generation matrix is A = FV−1, where entry Aij

represents the expected number of new infections in compartment
i produced by infected individuals in compartment j .



Global Asymptotic Stability
ρ and R0

Definition

Given a matrix A and eigenvalues λi , (i = 1, . . . , n), the spectral
radius (ρ) of A is defined as ρ(A) = max{1≤i≤n} |λi |.

Definition

Given matrices F and V , the basic reproduction number (R0) is
defined as ρ(FV−1).

Notes:

• R0 is the average number of people infected by one infected
person in a totally susceptible population.

• The spectral radius of A is not necessarily an eigenvalue of A.



Global Asymptotic Stability
Finding the Basic Reproduction Number (R0)

Therefore, knowing F and V−1, we can find our Next Generation
Matrix, (FV−1).

From this matrix, we found that

R0 = ρ(FV−1) =
√
AE + CI

Where

A =
σV ηβBbV So

B

(µV + σV )µVNo
B

C =
σV βW bV So

W

(µV + σV )µVNo
W

E =
σBηβV bV So

V [(1− p)ρB + p]

(α + σB + µB )(α + γB + µB )(So
W

+ ηSo
B

)

I =
σW βV bV So

V [(1− p)ρW + p]

(σW + µW )(γW + µW )(So
W

+ ηSo
B

)
+

πBσW ηβV bV So
V [qI p + qA(1− p)ρB ]

(σW + µW )(γW + µW )(α + µB + γB )(So
W

+ ηSo
B

)



Global Asymptotic Stability
The f (x , y) Matrix

Following the systematic method established by equation (2.1) in
Shuai et al, we set

f (x , y) := (F − V )x −F(x , y) + V(x , y)

Then

f (x, y) =



ηβBbV IV (
SoB
No
B
− SB

NB
)

0

0

−rqRπBRW

βW bV IV (
SoW
No
W
− SW

NW
)

0

0

0

βV bV (IW + ρW AW + η(IB + ρBAB ))(
SoV

So
W

+ηSo
B
− SV

NW +ηNB
)

0



*Note that not all terms are positive.



Global Asymptotic Stability
Lyapunov Functions

Definition

A function Q : Rn → R ∈ C 1(E ), with E an open set containing
the equilibrium point x0 ∈ Rn is called a Lyapunov function if:

• Q(x) > 0,Q(x0) = 0

•
d

dt
Q(x(t)) ≤ 0

Disclaimer: Finding a Lyapunov function is difficult if not impossible.



Matrix Theoretic Method for GAS
Shuai’s Theorem 2.1

To construct a Lyapunov function of the system under certain conditions:

Theorem (Shuai et al)

Let F , V , and f (x , y) be defined as before, and let ωT ≥ 0 be a left
eigenvector of the nonnegative matrix V−1F corresponding to the
eigenvalue *ρ(V−1F ) = ρ(FV−1) = R0. If f (x , y) ≥ 0* in Γ ⊂ Rn+m

+ ,
F ≥ 0, V ≥ 0, and R0 ≤ 1, then the function

Q = ωTV−1x

is a Lyapunov function for the model on Γ.

Note: We were not able to directly apply this theorem to the model
because several of the conditions failed.



Matrix Theoretic Method for GAS
Shuai’s Theorem 2.1

We were not able to apply this theorem to the model because
several of the conditions failed.

Even though the model does not satisfy all conditions of the
theorem, we will prove that ωTV−1f (x , y) is non-negative, which
eventually impies that Q ′ is non-positive.

Therefore, Q = ωTV−1x can still be used as a Lyapunov function
for the original model.



Global Asymptotic Stability
LaSalle’s Invariance Principle

Theorem (LaSalle’s Invariance Principle)

Let Γ ⊂ D ⊂ Rn be a compact positively invariant set with respect
to the system. Let Q : D → R be a continuously differentiable
function such that Q ′(x(t)) ≤ 0 in Γ (e. g. Q is a Lyapunov
function). Let S ⊂ Γ be the set of all points in Γ where
Q ′(x(t)) = 0. Let M ⊂ S be the largest invariant set in S . Then
every solution starting in Γ approaches M as t →∞, that is,

lim
t→∞

[
inf
z∈M
||x(t)− z ||

]
= 0



Global Asymptotic Stability
Theorem BMZ

Theorem (BMZ)

The disease free equilibrium of the Agusto model system is globally
asymptotically stable on Γ if SV ≤ So

V and R0 < 1.

Note: This theorem only requires two sufficient conditions to hold. This is a more general form than the work that
was done by previous researchers and REU students.



Global Asymptotic Stability
Convergence to the Disease Free Equilibrium

Proof.

Approach to prove global asymptotic stability of the DFE using LaSalle: (1) Find
a Lyapunov function for the system, (2) Find the set S in Γ where Q ′ = 0, (3)
Show that the largest invariant set in S is the DFE.

(1) Consider the function,

Q = ωTV−1x

where ωT is a left eigenvector of the matrix V−1F corresponding to the
eigenvalue R0. In general, R0 is not necessarily an eigenvalue of V−1F . In our
case, we confirmed that R0 is an eigenvalue and that there is a non-negative
eigenvector ωT corresponding to R0. In fact, ωT has the form[

0 A B 0 0 C D 0 0 E
]

where A, B, C, D, and E are positive values. Note that
d

dt
Q ′(x(t)) =

ωTV−1x ′ = ωTV−1(F −V )x −ωTV−1f (x , y) = (R0−1)ωT x −ωTV−1f (x , y).



Global Asymptotic Stability
Convergence to the Disease Free Equilibrium

Also, computation in MatLab shows that ωTV−1f (x , y) is
non-negative. x is also non-negative, so when R0 ≤ 1,
d

dt
Q ′(x(t)) = (R0 − 1)ωT x − ωTV−1f (x , y) ≤ 0. Also, one can

observe that we have Q ≥ 0, which implies that Q is indeed a
Lyapunov function in Γ.

(2) We want to find the set S = {x ∈ R15 : Q ′ = 0}. When
Q ′ = 0, we must have that (R0 − 1)ωT x = ωTV−1f (x , y). And
since R0 < 1, we have (R0 − 1)ωT x non-positive and
ωTV−1f (x , y) non-negative. Thus, (R0 − 1)ωT x = 0, so
ωT x = 0. This only implies that AB = IB = AW = IW = IV = 0.
Thus, S = {x ∈ R15 : AB = IB = AW = IW = IV = 0}. On this
set S , we are left with the following system:



Global Asymptotic Stability
Convergence to the Disease Free Equilibrium

S ′B(t) = πB − qRπBRW (t)− (α + µB)SB(t)

E ′B(t) = −(α + σB + µB)EB(t)

I ′BM(t) = rqRπBRW (t)− (α + µB)IBM(t)

R ′B(t) = (1− r)qRπBRW (t)− (α + µB)RB(t)

S ′W (t) = αSB(t)− µWSW (t)

E ′W (t) = −(σW + µW )EW (t)

I ′WM(t) = αIBM(t)− µW IWM(t)

R ′W (t) = αRB(t)− µWRW (t)

S ′V (t) = πV − µvSV (t)

E ′V (t) = −(µV + σV )EV (t)

We next prove that all trajectories of solutions to this system go to the DFE.



Global Asymptotic Stability
Convergence to the Disease Free Equilibrium

(3) To solve each of the differential equations, we will use the
integrating factor for differential equations of the following form

y ′ + ay = f (t)

y(t) = e−at
∫ t

0
eas f (s)ds + Ce−at

where C = y(0).
After rearranging S ′B(t), the integrating factor method can be
applied.
(i)

S ′B(t) + (α + µB)SB(t) = πB − qRπBRW (t)

SB(t) = e−(α+µB)t

∫ t

0
e(α+µB)s [πB − qRπBRW (s)]ds + Ce−(α+µB)t



Global Asymptotic Stability
Convergence to the Disease Free Equilibrium

Simplifying the expression gives

SB (t) = e−(α+µB )t
[

πB

α + µB

(e(α+µB )t − 1)− qRπB

∫ t

0
e(α+µB )sRW (s)ds

]
+ Ce−(α+µB )t

SB (t) =
πB

α + µB

−
πB

α + µB

e−(α+µB )t − qRπB e−(α+µB )t
∫ t

0
e(α+µB )sRW (s)ds + Ce−(α+µB )t

We can show that e−(α+µB)t
∫ t

0 e(α+µB)sRW (s)ds is bounded
which allows us to conclude that

lim
t→∞

SB(t) =
πB

α + µB
= So

B(t)

Likewise, the integrating factor method can be implemented for
the other differential equations.
(ii)

lim
t→∞

RB(t) = 0 = Ro
B



Global Asymptotic Stability
Convergence to the Disease Free Equilibrium

(iii)

S ′W (t) + µWSW (t) = αSB(t)

SW (t) = e−µW t

∫ t

0
eµW sαSB(s)ds + Ce−µW t

Substituting for SB(s) from (2.10) gives

SW (t) = αe−µW t
∫ t

0
eµW s

[
πB

z
−
πB

z
e−(z)s − qRπB e−(z)s

∫ s

0
e(z)rRW (r)dr + Ce−(z)s

]
ds + Ce−µW t

= αe−µW t
∫ t

0

πB eµW s

z
−
πB e(µW −(z))s

α + µB

−qRπB e(µW −(z))s
∫ s

0
ezrRW (r)dr+Ce(µW −(z))sds+Ce−µW t

Where z = α + µB

Similarly from the previous result,

lim
t→∞

SW (t) =
απB

µW (α + µB)
= So

W



Global Asymptotic Stability
Convergence to the Disease Free Equilibrium

(iv)
lim
t→∞

RW (t) = 0 = Ro
W

(v)

lim
t→∞

SV (t) =
πV
µV

= So
V

(vi)
lim
t→∞

EB(t) = 0 = E o
B

(vii)
lim
t→∞

IBM(t) = 0 = I oBM

(viii)
lim
t→∞

EW (t) = 0 = E o
W

(ix)
lim
t→∞

IWM(t) = 0 = I oWM

(x)
lim
t→∞

EV (t) = 0 = E o
V



Global Asymptotic Stability
Stability of the Disease Free Equilibrium

By solving the system of differential equations, we were able to
prove that as t →∞, all possible trajectories of the system
approach the DFE. Thus, E0 is the largest and only invariant set in
S with respect to the system. Clearly, Γ is compact and we have
shown that it is positively invariant with respect to the system.
Applying LaSalle’s Invariance Principle, we conclude that the
disease free equilibrium point E0 is globally asymptotically stable
when R0 < 1.

�



The First Modified Model
Flow Chart of the First Modified Model



The First Modified Model
The Model

S ′B(t) = πB − qAπBAW (t)− qIπB IW (t)− qRπBRW (t)− λB(IV ,NB)SB(t)− (α + µB)SB(t)

E ′B(t) = λB(IV ,NB)SB(t)− (σB + µB)EB(t)

A′B(t) = (1− c1 − c2)qAπBAW (t) + (1− p)σBEB(t)− (γB + µB)AB(t)

I ′B(t) = (1− d)qIπB IW (t) + c1qAπBAW (t) + pσBEB(t)− (γB + µB)IB(t)

I ′BM(t) = c2qAπBAW (t) + dqIπB IW (t)− (α + µB)IBM(t)

R ′B(t) = qRπBRW (t) + γBAB(t) + γB IB(t)− (α + µB)RB(t)

S ′W (t) = αSB(t)− λW (IV ,NW )SW (t)− µWSW (t)

E ′W (t) = λW (IV ,NW )SW (t)− (σW + µW )EW (t)

A′W (t) = (1− p)σWEW (t)− (γW + µW )AW (t)

I ′W (t) = pσWEW (t)− (γW + µW )IW (t)

I ′WM(t) = αIBM(t)− µW IWM(t)

R ′W (t) = αRB(t) + γWAW (t) + γW IW (t)− µWRW (t)

S ′V (t) = πV − λV (IB , IW ,NB ,NW )SV (t)− µVSV (t)

E ′V (t) = λV (IB , IW ,NB ,NW )SV (t)− (µV + σV )EV (t)

I ′V (t) = σVEV (t)− µV IV (t)



The First Modified Model
The Model

Where

λB(IV ,NB) =
ηβBbV IV

NB

λW (IV ,NW ) =
βW bV IV

NW

λV (IB , IW ,NB ,NW ) = βV bV (
IW + ηIB
NW + ηNB

)

And

NB(t) = SB(t) + EB(t) + AB(t) + IB(t) + IBM(t) + RB(t)

NW (t) = SW (t) + EW (t) + AW (t) + IW (t) + IWM(t) + RW (t)

NV (t) = SV (t) + EV (t) + IV (t)



Conclusions from the First Modified Model

As we showed in the midterm presentations, we were able to prove
the global asymptotic stability of the unique disease free
equilibrium point for our first modified model. However, no
endemic equilibrium exists for this system of equations.



The Generalized Model of Zika Virus Dynamics
The Variables and Constants

Variables

SB(t), SW (t) = Susceptible newly born babies and adults

EB(t),EW (t) = Exposed newly born babies and adults

AB(t),AW (t) = Asymptomatic newly born babies and adults

IB(t), IW (t) = Infectious symptomatic newly born babies without microcephaly and adults

IBM(t), IWM(t) = Microcephalic newly born babies and adults

RB(t),RW (t) = Recovered newly born babies and adults

SV (t) = Susceptible female mosquitoes

EV (t) = Exposed female mosquitoes

IV (t) = Infected female mosquitoes

Constants

NB = Number of newly born babies

NW = Number of adults

NV = Number of mosquitoes

KV = Carrying capacity of mosquitoes



The Generalized Model of Zika Virus Dynamics
The Parameters

FµH = Birth rate and natural death rate of newly born babies and adults

p = Fraction of adults who are infected

1− p = Remaining fraction of adults who are asymptomatic

α = Maturation rate

qA, qI ,FqE = Transmission rates from asymptomatic, infected, and exposed adults to susceptible babies, respectively

c = Fraction of newly born babies who are infected

d = Fraction of newly born babies who have microcephaly

1− c − d = Remaining fraction of newly born babies who are asymptomatic

η = Modification parameter

Fθ = Relative mosquito-to-human transmission probability of exposed mosquitoes to susceptible humans

βW , βB = Transmission probability per contact of adults and newly born babies

σW , σB = Progression rate of exposed adults and newly born babies

γW , γB = Recovery rate of asymptomatic and symptomatic adults and newly born babies

Fχ = Transmission rate from infected adults to susceptible adults

Fκ = Relative human-to-human transmission probability of exposed adults to susceptible adults

Fψ = Relative human-to-human transmission probability of asymptomatic adults to susceptible adults

πV = Recruitment rate of mosquitoes

βV = Transmission probability per contact of susceptible mosquitoes

bV = Mosquito biting rate

Fφ = Relative human-to-mosquito transmission probability of exposed humans to susceptible mosquitoes

σV = Progression rate of exposed mosquitoes

µV = Natural death rate of mosquitoes



The Generalized Model of Zika Virus Dynamics
Flow Diagram of the Model



The Generalized Model of Zika Virus Dynamics
The Model

S ′B(t) = µH(NB − SB(t))−
(
qAAW (t) + qI IW (t) + qEEW (t)

NW (t)

)
SB(t)− λB(EV , IV ,NB)SB(t)

E ′B(t) = λB(EV , IV ,NB)SB(t) +

(
qAAW (t) + qI IW (t) + qEEW (t)

NW (t)

)
SB(t)− (σB + µH)EB(t)

A′B(t) = (1− c − d)σBEB(t)− (γB + µH)AB(t)

I ′B(t) = cσBEB(t)− (γB + µH)IB(t)

I ′BM(t) = dσBEB − (α + µH)IBM(t)

R ′B(t) = γBAB(t) + γB IB(t)− µHRB(t)

S ′W (t) = µH(NW − SW (t))− λW (EV , IV ,NW )SW (t)− χ
(
κEW + IW + ψAW

NW

)
SW (t)

E ′W (t) = λW (EV , IV ,NW )SW (t) + χ

(
κEW + IW + ψAW

NW

)
SW (t)− (σW + µH)EW (t)

A′W (t) = (1− p)σWEW (t)− (γW + µH)AW (t)

I ′W (t) = pσWEW (t)− (γW + µH)IW (t)

I ′WM(t) = αIBM(t)− µH IWM(t)

R ′W (t) = γWAW (t) + γW IW (t)− µHRW (t)

S ′V (t) =

(
πV −

(πV − µV )NV

KV

)
NV − λV (EB , IB ,EW , IW ,NB ,NW )SV (t)− µVSV (t)

E ′V (t) = λV (EB , IB ,EW , IW ,NB ,NW )SV (t)− (µV + σV )EV (t)

I ′V (t) = σVEV (t)− µV IV (t)



The Generalized Model of Zika Virus Dynamics
The Model

λB(EV , IV ,NB) =
ηβBbV (IV + θEV )

NB

λW (EV , IV ,NW ) =
βW bV (IV + θEV )

NW

λV (EB , IB ,EW , IW ,NB ,NW ) = βV bV (
φEW + ηφEB + IW + ηIB

NW + ηNB
)

The total population of adults (NW ), the total population of newly-born babies (NB), and the
total vector population (NV ) are given by:

NB(t) = SB(t) + EB(t) + AB(t) + IB(t) + IBM(t) + RB(t)

NW (t) = SW (t) + EW (t) + AW (t) + IW (t) + IWM(t) + RW (t)

NV (t) = SV (t) + EV (t) + IV (t)

NH(t) = NB(t) + NW (t)

Where the total populations NB , NW , and NV are constant.



The Feasible Region

The feasible region for the model is Γ3 = ΓH × ΓV ⊂ R12
+ × R3

+ with

ΓH = {SB ,EB ,AB , IB , IBM ,RB , SW ,EW ,AW , IW , IWM ,RW : NH ≤ NH(0)}

ΓV = {SV ,EV , IV : NV ≤ KV }.

We now show that this region is positively invariant. Adding the first twelve
equations and the last three equations of the model, we obtain that N ′H(t) = 0 and

N ′V (t) = NV (t)(1− NV (t)

KV
)(πV − µV ), respectively. Then NH(t) is constant, so for

all t ≥ 0, NH(t) ≤ NH(0). Separating the other equation, we get
1

NV (t)(1− NV (t)

KV
)

N
′
V (t) = πv − µV . Integrating and simplifying, we get

NV (t) =
KV e

(πV−µV )t

e(πV−µV )t + c
. This expression can be rewritten as KV −

KV c

c + e(πV−µV )t
.

Also, one can see that c =
KV

NV (0)
is non-negative. Thus, for all t ≥ 0, NV (t) ≤ KV .



The Feasible Region

Now, we show that for non-negative initial points, solutions to the system stay
non-negative for all t > 0. That is, for example, if SB(0) ≥ 0, then SB(t) ≥ 0 for
t ≥ 0. First, consider

S ′B(t) = µH(NB −SB(t))−
(

qAAW (t)+qI IW (t)+qEEW (t)
NW (t)

)
SB(t)−λB(EV , IV ,NB)SB(t)

Rearranging terms and utilizing an integrating factor, we get

d

dt
SB(t)e

∫ t1
0 λB(IVNB)+(

qAAW (u)+qI IW (u)+qE EW (u)

NW (u)
)+µH t =∫ t1

0 [µHNBe
∫ t1

0 λB(IV ,NB)+(
qAAW (u)+qI IW (u)+qE EW (u)

NW (u)
)+µHu]du

SB(t1)e
∫ t1

0 λB(IVNB)+(
qAAW (u)+qI IW (u)+qE EW (u)

NW (u)
)+µH t − SB(0) =∫ t1

0 [µHNBe
∫ t1

0 λB(IV ,NB)+(
qAAW (u)+qI IW (u)+qE EW (u)

NW (u)
)+µHu]du

SB(t1) =
SB(0) +

∫ t1

0 [µHNBe
∫ t1

0 λB(IV ,NB)+(
qAAW (u)+qI IW (u)+qE EW (u)

NW (u)
)+µHu]du

e
∫ t1

0 λB(IVNB)+(
qAAW (u)+qI IW (u)+qE EW (u)

NW (u)
)+µH t

Thus, when starting data is nonnegative, SB(t) ≥ 0 for all t > 0. Similarly, we can
show that the other populations stay non-negative as well. Therefore, Γ3 is
positively invariant.



Finding the Disease Free Equilibrium

We found that the disease free equilibrium is given by:

E0 = {NB , 0, 0, 0, 0, 0,NW , 0, 0, 0, 0, 0,KV , 0, 0}



Global Asymptotic Stability of the Disease Free Equilibrum
Theorem AP

Theorem (AP)

If R0 < 1, then the disease-free equilibrium E0 is globally asymptotically stable in
Γ3.

Proof.

As before, we compartmentalize the model into disease and non-disease.

x =



EB

IB
EW

AW

IW
EV

IV


and y =



SB
AB

IBM
RB

SW
IWM

RW

SV





Global Asymptotic Stability
The F and V Matrices

F =



λB(EV , IV ,NB)SB(t) +

(
qAAW (t) + qI IW (t) + qEEW (t)

NW (t)

)
SB(t)

0

λW (EV , IV ,NW )SW (t) + χ

(
κEW + IW + ψAW

NW

)
SW (t)

0
0

λV (EB , IB ,EW , IW ,NB ,NW )SV (t)
0



V =



(σB + µH)EB(t)
(γB + µH)IB(t)− cσBEB(t)

(σW + µH)EW (t)
(γW + µH)AW (t)− (1− p)σWEW (t)

(γW + µH)IW (t)− pσWEW (t)
(µV + σV )EV (t)

µV IV (t)− σVEV (t)





Global Asymptotic Stability
The F Matrix

F =



0 0 qE
NB
NW

qA
NB
NW

qI
NB
NW

θηβBbV ηβBbV

0 0 0 0 0 0 0

0 0 χκ χψ χ θβW bV βW bV

0 0 0 0 0 0 0

0 0 0 0 0 0 0

ηβV bVφKV
NW +ηNB

ηβV bVKV
NW +ηNB

βV bVφKV
NW +ηNB

0 βV bVKV
NW +ηNB

0 0

0 0 0 0 0 0 0





Global Asymptotic Stability
The V Matrix

V =



σB + µH 0 0 0 0 0 0

−cσB γB + µH 0 0 0 0 0

0 0 σW + µH 0 0 0 0

0 0 −(1− p)σW γW + µH 0 0 0

0 0 −pσW 0 γW + µH 0 0

0 0 0 0 0 µV + σV 0

0 0 0 0 0 −σV µV





Global Asymptotic Stability
The f (x , y) Matrix

f (x , y) =



ηβBbV (IV + θEV )

(
1− SB

NB

)
+ (qEEW + qAAW + qI IW )

(
NB

NW
− SB

NW

)
0(

χ(κEW + IW + ψAW ) + βW bV (IV + θEV )

)(
1− SW

NW

)
0
0

βV bV (IW + ηIB + φEW + ηφEB)

(
KV

NW + ηNB
− SV

NW + ηNB

)
0


≥ 0



Global Asymptotic Stability
The V−1 Matrix

V−1 =



1

σB + µH
0 0 0 0 0 0

cσB
(σW + µH)(γB + µH)

1

γB + µH
0 0 0 0 0

0 0
1

σW + µH
0 0 0 0

0 0
σW (1− p)

(σW + µH)(γW + µH)

1

γW + µH
0 0 0

0 0
σW p

(σW + µH)(γW + µH)
0

1

γW + µH
0 0

0 0 0 0 0
1

σV + µV
0

0 0 0 0 0
σV

µV (σV + µV )

1

µV





Global Asymptotic Stability
The Next Generation Matrix

FV−1 =



0 0 A B C D E
0 0 0 0 0 0 0
0 0 P G H I J
0 0 0 0 0 0 0
0 0 0 0 0 0 0
K L M 0 N 0 0
0 0 0 0 0 0 0





Global Asymptotic Stability
The Irreducible Matrix V−1F

The matrix V−1F has the form (it’s irreducible!):

V−1F =



0 0 A1 A2 A3 A4 A5

0 0 A6 A7 A8 A9 A10

0 0 A11 A12 A13 A14 A15

0 0 A16 A17 A18 A19 A20

0 0 A21 A22 A23 A24 A25

A26 A27 A28 0 A29 0 0

A30 A31 A32 0 A33 0 0


Where each AX denotes a strictly positive value.



Perron-Frobenius Theorem

Theorem (Perron-Frobenius)

Let A be an irreducible non-negative n × n matrix with spectral
radius ρ(A) = r . Then the following statements hold:

• r is a positive simple eigenvalue of the matrix A.

• A has a left eigenvector ω with eigenvalue r whose
components are all positive.



Global Asymptotic Stability
Convergence to the Disease Free Equilibrium

Here, we see that the directed graph associated with V−1F is strongly
connected. This implies that V−1F is an irreducible matrix. Applying the
Perron-Frobenius Theorem, we conclude that the spectral radius of V−1F ,
ρ(V−1F ), is in fact a simple positive eigenvalue and has an associated left
eigenvector ω that is strictly positive. Also, note that
ρ(V−1F ) = ρ(FV−1). Thus, R0 = ρ(FV−1) is an eigenvalue of V−1F .
Thus, by Shuai’s Theorem 2.1, Q = ωTV−1x is a Lyapunov function .
Again, Q ′ = (R0 − 1)ωT x − ωTV−1f (x , y). For R0 ≤ 1, since
ωT > 0, x ≥ 0,V−1 ≥ 0, and f (x , y) ≥ 0,Q ′ ≤ 0. Now we consider the
set S = {z ∈ R15 : Q ′ = 0}. When Q ′ = 0, we must have that
(R0 − 1)ωT x = ωTV−1f (x , y). Using the same reasoning as above,
ωT x = 0. This implies that EB = IB = EW = AW = IW = EV = IV = 0,
that is, the diseased compartment x = 0. Then the set S can be rewritten
as {z ∈ R15 : EB = IB = EW = AW = IW = EV = IV = 0}.



Global Asymptotic Stability
Convergence to the Disease Free Equilibrium

On this set S , we are left with the following disease-free system:

S ′B(t) = µH(NB − SB(t))

A′B(t) = −(γB + µH)AB(t)

I ′BM(t) = −(α + µH)IBM(t)

R ′B(t) = γBAB(t)− µHRB(t)

S ′W (t) = µH(NW − SW (t))

I ′WM(t) = αIBM(t)− µH IWM(t)

R ′W (t) = −µHRW (t)

S ′V (t) = (πV −
(πV − µV )SV (t)

KV
)SV (t)− µVSV (t)



Global Asymptotic Stability
Convergence to the Disease Free Equilibrium

We can show that everything goes to the DFE. Thus, E0 is the
largest and only invariant set in S . Also, since our region Γ3 is
compact and positively invariant, we can apply LaSalle’s Invariance
Principle to conclude that the DFE is globally asymptotically
stable.

�



Existence of an Endemic Equilibrium
Shuai’s Theorem 2.2

Theorem (Shuai’s Theorem 2.2)

Let F , V , f (x , y) be defined as above, and let Γ ⊂ Rn+m
+ be compact such

that (0, y0) ∈ Γ and Γ is positively invariant with respect to the system.
Suppose that f (x , y) ≥ 0 with f (x , y0) = 0 in Γ, F ≥ 0, V−1 ≥ 0, and
V−1F is irreducible. Assume that the disease-free system y ′ = g(0, y) has
a unique equilibrium y = y0 > 0 that is GAS in Rm

+. Then the following
holds:

• If R0 > 1, then the DFE is unstable and there exists at least one EE.

As seen before, our system satisfies all the assumptions in this theorem.
Thus, when R0 > 1 our system has an endemic equilibrium:

E ∗ := (S∗B ,E
∗
B ,A

∗
B , I
∗
B , I
∗
BM ,R

∗
B ,S

∗
W ,E

∗
W ,A

∗
W , I

∗
W , I

∗
WM ,R

∗
W ,S

∗
V ,E

∗
V , I
∗
V )

Note: We could no apply this theorem to the original model because the matrix V−1F was not irreducible



Global Asymptotic Stability
Shuai’s Proposition 3.1

Given a weighted digraph with m vertices, we define the m ×m weighted
matrix A with aij > 0 if a link exists from node j to node i and aij = 0
otherwise, and we will denote such weighted digraph as (G,A). The
Laplacian of (G,A) is defined as

L = lij =

{
−aij , i 6= j∑

k 6=i aik , i = j

From Kirchhoff’s matrix tree theorem, we let ci be the cofactor of lii in L.
If (G,A) is strongly connected, then ci > 0 for 1 ≤ i ≤ n.



Global Asymptotic Stability
Shuai’s Theorem 3.5

Theorem (Shuai Theorem 3.5)

Suppose that the following assumptions are satisfied:

• There exist functions Di : U → R, Gij : U → R and constants aij ≥ 0
such that for every 1 ≤ i ≤ n, D ′i = D ′|(solutions) ≤

∑n
j=1 aijGij(z) for

z ∈ U.
• For A = [aij ], each directed cycle C of (G,A) has∑

(s,r)∈E(C) Grs(z) ≤ 0 for z ∈ U, where E(C) denotes the arc set of
the directed cycle C.

Then, the function

D(z) =
n∑

i=1

ciDi (z)

with constants ci ≥ 0 as defined before, satisfies D ′ = D ′|(solutions) ≤ 0;
that is, D is a Lyapunov function for the system.

Note: This theorem was applied because the matrix-theoretic method used to prove global asymptotic stability for the DFE
cannot be applied to the EE.



Global Asymptotic Stability
Theorem WE DID IT

Theorem (WE DID IT)

For R0 > 1, the endemic equilibrium point E ∗ is globally
asymptotically stable in Γ3.



Global Asymptotic Stability
Finding a Lyapunov Function

Proof.

Define functions:

D1 = SB − S∗B − S∗B ln
SB
S∗B

+ EB − E ∗B − E ∗B ln
EB

E ∗B

D2 = IB − I ∗B − I ∗B ln
IB
I ∗B

D3 = SW − S∗W − S∗W ln
SW
S∗W

+ EW − E ∗W − E ∗W ln
EW

E ∗W

D4 = AW − A∗W − A∗W ln
AW

A∗W

D5a = IW − I ∗W − I ∗W ln
IW
I ∗W

D5b = IW − I ∗W − I ∗W ln
IW
I ∗W

D5c = IW − I ∗W − I ∗W ln
IW
I ∗W

D6 = SV − S∗V − S∗V ln
SV
S∗V

+ EV − E ∗V − E ∗V ln
EV

E ∗V

D7 = IV − I ∗V − I ∗V ln
IV
I ∗V



Global Asymptotic Stability
Finding a Lyapunov Function

Differentiating, treating NB ,NW ,NV as constants, applying the inequality
1− x + ln x ≤ 0, and simplifying yields:

D ′1 ≤ qA
A∗WS∗B
N∗W

(
AW

A∗W
− ln

AW

A∗W
− EB

E ∗B
+ ln

EB

E ∗B

)

+qI
I ∗WS∗B
N∗W

(
IW
I ∗W
− ln

IW
I ∗W
− EB

E ∗B
+ ln

EB

E ∗B

)

+qE
E ∗WS∗B
N∗W

(
EW

E ∗W
− ln

EW

E ∗W
− EB

E ∗B
+ ln

EB

E ∗B

)

+ηβBbV
I ∗VS

∗
B

N∗B

(
IV
I ∗V
− ln

IV
I ∗V
− EB

E ∗B
+ ln

EB

E ∗B

)

+ηβBbV θ
E ∗VS

∗
B

N∗B

(
EV

E ∗V
− ln

EV

E ∗V
− EB

E ∗B
+ ln

EB

E ∗B

)
:= a1,4G1,4 + a1,5aG1,5a + a1,3G1,3 + a1,7G1,7 + a1,6G1,6



Global Asymptotic Stability
Finding a Lyapunov Function

D ′2 ≤ cσBE
∗
B

(
EB

E ∗B
− ln

EB

E ∗B
− IB

I ∗B
+ ln

IB
I ∗B

)
:= a2,1G2,1

D ′3 ≤ βW bV
I ∗VS

∗
W

N∗W

(
IV
I ∗V
− ln

IV
I ∗V
− EW

E ∗W
+ ln

EW

E ∗W

)

+βW bV θ
E ∗VS

∗
W

N∗W

(
EV

E ∗V
− ln

EV

E ∗V
− EW

E ∗W
+ ln

EW

E ∗W

)

+χ
I ∗WS∗W
N∗W

(
IW
I ∗W
− ln

IW
I ∗W
− EW

E ∗W
+ ln

EW

E ∗W

)

+χψ
A∗WS∗W
N∗W

(
AW

A∗W
− ln

AW

A∗W
− EW

E ∗W
+ ln

EW

E ∗W

)
:= a3,7G3,7 + a3,6G3,6 + a3,5bG3,5b + a3,4G3,4



Global Asymptotic Stability
Finding a Lyapunov Function

D ′4 ≤ (1− p)σWE ∗W

(
EW

E ∗W
− ln

EW

E ∗W
− AW

A∗W
+ ln

AW

A∗W

)
:= a4,3G4,3

D ′5a ≤ pσWE ∗W

(
EW

E ∗W
− ln

EW

E ∗W
− IW

I ∗W
+ ln

IW
I ∗W

)
:= a5a,3G5a,3

D ′5b ≤ pσWE ∗W

(
EW

E ∗W
− ln

EW

E ∗W
− IW

I ∗W
+ ln

IW
I ∗W

)
:= a5b,3G5b,3

D ′5c ≤ pσWE ∗W

(
EW

E ∗W
− ln

EW

E ∗W
− IW

I ∗W
+ ln

IW
I ∗W

)
:= a5c,3G5c,3



Global Asymptotic Stability
Finding a Lyapunov Function

D ′6 ≤ βV bVφ
E ∗WS∗V

N∗W + ηN∗B

(
EW

E ∗W
− ln

EW

E ∗W
− EV

E ∗V
+ ln

EV

E ∗V

)

+βV bVφη
E ∗BS

∗
V

N∗W + ηN∗B

(
EB

E ∗B
− ln

EB

E ∗B
− EV

E ∗V
+ ln

EV

E ∗V

)

+βV bV
I ∗WS∗V

N∗W + ηN∗B

(
IW
I ∗W
− ln

IW
I ∗W
− EV

E ∗V
+ ln

EV

E ∗V

)

+βV bV η
I ∗BS
∗
V

N∗W + ηN∗B

(
IB
I ∗B
− ln

IB
I ∗B
− EV

E ∗V
+ ln

EV

E ∗V

)
:= a6,3G6,3 + a6,1G6,1 + a6,5cG6,5c + a6,2G6,2

D ′7 ≤ σVE ∗V

(
EV

E ∗V
− ln

EV

E ∗V
− IV

I ∗V
+ ln

IV
I ∗V

)
:= a7,6G7,6



Global Asymptotic Stability
Weighted Connected Graph



Global Asymptotic Stability
Cycles

Cycle 1: G6,1 + G7,6 + G3,7 + G5a,3 + G1,5a = 0
Cycle 2: G6,1 + G7,6 + G3,7 + G4,3 + G1,4 = 0
Cycle 3: G6,1 + G7,6 + G3,7 + G1,3 = 0
Cycle 4: G6,1 + G7,6 + G1,7 = 0
Cycle 5: G6,1 + G3,6 + G5a,3 + G1,5a = 0
Cycle 6: G6,1 + G3,6 + G4,3 + G1,4 = 0
Cycle 7: G6,1 + G3,6 + G1,3 = 0
Cycle 8: G6,1 + G1,6 = 0
Cycle 9: G2,1 + G6,2 + G7,6 + G3,7 + G5a,3 + G1,5a = 0
Cycle 10: G2,1 + G6,2 + G7,6 + G3,7 + G4,3 + G1,4 = 0
Cycle 11: G2,1 + G6,2 + G7,6 + G3,7 + G1,3 = 0
Cycle 12: G2,1 + G6,2 + G7,6 + G1,7 = 0
Cycle 13: G2,1 + G6,2 + G3,6 + G5a,3 + G1,5a = 0
Cycle 14: G2,1 + G6,2 + G3,6 + G4,3 + G1,4 = 0
Cycle 15: G2,1 + G6,2 + G3,6 + G1,3 = 0
Cycle 16: G2,1 + G6,2 + G1,6 = 0
Cycle 17: G5b,3 + G3,5b = 0
Cycle 18: G5c,3 + G6,5c + G7,6 + G3,7 = 0
Cycle 19: G5c,3 + G6,5c + G3,6 = 0
Cycle 20: G6,3 + G7,6 + G3,7 = 0
Cycle 21: G6,3 + G3,6 = 0
Cycle 22: G4,3 + G3,4 = 0



Global Asymptotic Stability
Existence of ci s

Then, by Shuai’s Theorem 3.5, there exists constants ci such that

D =
n∑

i=1

ciDi

is a Lyapunov function for the given system.

Next step: finding ci values.



Global Asymptotic Stability
Shuai’s Theorems 3.3 and 3.4: Combinatorial Idenities

Theorem (Shuai’s Theorem 3.3)

Let ci be defined as before. If aij > 0 and d+(j) = 1 for some i , j , then

ciaij =
m∑

k=1

cjajk

Theorem (Shuai’s Theorem 3.4)

Let ci be defined as before. If aij > 0 and d−(i) = 1 for some i , j , then

ciaij =
m∑

k=1

ckaki



Global Asymptotic Stability
Weighted Connected Graph



Global Asymptotic Stability
Applying Shuai’s Theorems 3.3 and 3.4

Taking node 2, we see that both the in-degree d−(i) = 1 and the
out-degree d+(j) = 1. Therefore either theorem 3.3 or theorem 3.4
can be applied.



Global Asymptotic Stability
Applying Shuai’s Theorem 3.3

We have a6,2 > 0, so i = 6 and j = 2. Therefore, we see

c6a6,2 =
m∑

k=1

c2a2,k = c2a2,1 + c2a2,2 + c2a2,3 + c2a2,4 + c2a2,5a + c2a2,5b + c2a2,5c + c2a2,6 + c2a2,7

Because the edges a2,2, a2,3, a2,4, a2,5a, a2,5b, a2,5c , a2,6, a2,7 do
not exist, these quantities all equal 0, and thus we are left with

c6a6,2 = c2a2,1



Global Asymptotic Stability
Applying Shuai’s Theorem 3.4

Similarly, we have a2,1 > 0, so i = 2 and j = 1. Therefore, we see

c2a2,1 =
m∑

k=1

ckak,2 = c1a1,2 + c2a2,2 + c3a3,2 + c4a4,2 + c5aa5a,2 + c5ba5b,2 + c5ca5c,2 + c6a6,2 + c7a7,2

Because the edges a1,2, a2,2, a3,2, a4,2, a5a,2, a5b,2, a5c,2, a7,2 do
not exist in figure 2, these quantities all equal 0, and thus we are
left with

c2a2,1 = c6a6,2



Global Asymptotic Stability
Applying Shuai’s Theorems 3.3 and 3.4

We apply these two theorems to each node where d+(j) = 1 or
d−(i) = 1, and we find that

c2a2,1 = c6a6,2

c4a4,3 = c1a1,4 + c3a3,4

c5aa5a,3 = c1a1,5a

c5ba5b,3 = c3a3,5b

c5ca5c,3 = c3a6,5c

c7a7,6 = c1a1,7 + c3a3,7



Global Asymptotic Stability
Finding the ci Values

We then set c1 = 1, c3 = 1, and c6 = 1 and solve for the remaining ci values:

c1 = 1

c2 = c6
a6,2

a2,1
=

βV bV ηI
∗
BS
∗
V

cσBE
∗
B(N∗W + ηN∗B)

c3 = 1

c4 =
c1a1,4 + c3a3,4

a4,3
=

qAA
∗
WS∗B + χψA∗WS∗W

N∗W (1− p)σWE ∗W

c5a = c1
a1,5a

a5a,3
=

qI I
∗
WS∗B

pσWE ∗WN∗W

c5b = c3
a3,5b

a5b,3
=

χI ∗WS∗W
pσWE ∗WN∗W

c5c = c6
a6,5c

a5c,3
=

βV bV I
∗
WS∗V

pσWE ∗W (N∗W + ηN∗B)

c6 = 1

c7 =
c1a1,7 + c3a3,7

a7,6
=
ηβBbV I

∗
VS
∗
BN
∗
W + βW bV I

∗
VS
∗
WN∗B

σVE
∗
VN
∗
BN
∗
W



Global Asymptotic Stability
D Function

So we have

D = c1D1 + c2D2 + c3D3 + c4D4 + c5aD5a + c5bD5b + c5cD5c + c6D6 + c7D7

=

(
SB − S∗B − S∗B ln

SB
S∗B

+ EB − E ∗B − E ∗B ln
EB

E ∗B

)
+ c2

(
IB − I ∗B − I ∗B ln

IB
I ∗B

)

+

(
SW − S∗W − S∗W ln

SW
S∗W

+ EW − E ∗W − E ∗W ln
EW

E ∗W

)
+ c4

(
AW − A∗W − A∗W ln

AW

A∗W

)

+ c5a

(
IW − I ∗W − I ∗W ln

IW
I ∗W

)
+ c5b

(
IW − I ∗W − I ∗W ln

IW
I ∗W

)
+ c5c

(
IW − I ∗W − I ∗W ln

IW
I ∗W

)

+

(
SV − S∗V − S∗V ln

SV
S∗V

+ EV − E ∗V − E ∗V ln
EV

E ∗V

)
+ c7

(
IV − I ∗V − I ∗V ln

IV
I ∗V

)
This is our Lyapunov function.



Global Asymptotic Stability
Lyapunov Function D ′

Now we consider the set S = {x ∈ R+
15 : D ′ = 0}. Differentiating, we get

D ′ =

(
SB − S∗B

SB
S ′B +

EB − E ∗B
EB

E ′B

)
+ c2

(
IB − I ∗B

IB
I ′B

)

+

(
SW − S∗W

SW
S ′W +

EW − E ∗W
EW

E ′W

)
+ c4

(
AW − A∗W

AW
A′W

)

+ (c5a + c5b + c5c)

(
IW − I ∗W

IW
I ′W

)
+

(
SV − S∗V

SV
S ′V +

EV − E ∗V
EV

E ′V

)

+ c7

(
IV − I ∗V

IV
I ′V

)



Global Asymptotic Stability
D ′ = 0 Converging to the Endemic Equilibrium

Since ci > 0 for all i, when D ′ = 0, we have

(
IB − I ∗B

IB
I ′B

)
= 0.

Then there are two cases: (1) IB − I ∗B = 0 or (2)

I ′B = cσBEB −
cσBE

∗
B IB

I ∗B
= 0. In case 1, we get IB = I ∗B as desired.

In case 2, solving yields EB =
E∗B
I∗B
IB . Since

E∗B
I∗B

is a positive

constant, this means that EB and IB are positively correlated, a
biological contradiction, except when IB = I ∗B and EB = E ∗B . In
either case, we have IB = I ∗B .



Global Asymptotic Stability
D ′ = 0 Converging to the Endemic Equilibrium

Similarly, considering(
IV − I ∗V

IV
I ′V

)
=

(
AW − A∗W

AW
A′W

)
=

(
IW − I ∗W

IW
I ′W

)
= 0 and

using the same reasoning, we can deduce that IV = I ∗V , AW = A∗W ,

IW = I ∗W . In addition, we know that

(
SB − S∗B

SB
S ′B

)
= 0. Then

either SB = S∗B or S ′B = 0. S ′B can be written as

P(S∗B −SB) +qE

(
E ∗WS∗B
NW

− EWSB
NW

)
+ηβBbV θ

(
E ∗VS

∗
B

NB
− EVSB

NB

)
,

where P is some positive constant. Setting this expression equal to
zero, we can see that in any case, we must have SB = S∗B . We can
similarly conclude that SW = S∗W and SV = S∗V . Now, given this,
we can reason that EB = E ∗B , EW = E ∗W , and EV = E ∗V .



Global Asymptotic Stability
D ′ = 0 Converging to the Endemic Equilibrium

Thus far, we have SB = S∗B , EB = E ∗B , IB = I ∗B , SW = S∗W ,
EW = E ∗W , AW = A∗W , IW = I ∗W , SV = S∗V , EV = E ∗V , and
IV = I ∗V . Plugging these values into the original system, we are left
with the following:

A′B(t) = (1− c − d)σBE
∗
B − (γB + µH)AB(t)

I ′BM(t) = dσBE
∗
B − (α + µH)IBM(t)

R ′B(t) = γBAB(t) + γB I
∗
B − µHRB(t)

I ′WM(t) = αIBM(t)− µH IWM(t)

R ′W (t) = γWA∗W + γW I ∗W − µHRW (t)



Global Asymptotic Stability
D ′ = 0 Converging to the Endemic Equilibrium

Now, we use an integrating factor and take limits.

(i)

A′B(t) + (γB + µH)AB(t) = (1− c − d)σBE
∗
B

AB(t) = e−(γB+µH)t

∫ t

0
e(γB+µH)s [(1− c − d)σBE

∗
B ]ds + Ce−(γB+µH)t

AB(t) =
(1− c − d)σBE

∗
B

γB + µH
−

(1− c − d)σBE
∗
B

γB + µH
e−(γB+µH)t + Ce−(γB+µH)t

Then

lim
t→∞

AB(t) =
(1− c − d)σBE

∗
B

γB + µH
= A∗B



Global Asymptotic Stability
D ′ = 0 Converging to the Endemic Equilibrium

Similarly,
(ii)

lim
t→∞

IBM(t) =
dσBE

∗
B

α + µH
= I ∗BM

(iii)

lim
t→∞

RB(t) =
γBA

∗
B + γB I

∗
B

µH
= R∗B

(iv)

lim
t→∞

IWM(t) =
αI ∗BM
µH

= I ∗WM

(v)

lim
t→∞

RW (t) =
γWA∗W + γW I ∗W

µH
= R∗W



Global Asymptotic Stability
D ′ = 0 Converging to the Endemic Equilibrium

Therefore, we have shown that all trajectories in S go to the
endemic equilibrium,

E∗ = (S∗B ,E
∗
B ,A

∗
B , I
∗
B , I
∗
BM ,R

∗
B ,S

∗
W ,E

∗
W ,A

∗
W , I

∗
W , I

∗
WM ,R

∗
W ,S

∗
V ,E

∗
V , I
∗
V )



we did it fellas

Thus, we can see that the largest and only invariant set in S is
exactly equal to the endemic equilibrium, E ∗. Therefore, invoking
LaSalle’s Invariance Principle, we conclude that the endemic
equilibrium E ∗ is globally asymptotically stable in int(Γ3) and
therefore is unique.

�



Model Graveyard

This project is dedicated to the many models that did not work, including:

• The Super Special Awesome Modified Model

• Morgan’s Marvelous Modified Model, Maybe

• The Model that We Think Will Work

• GAAH HELP US THIS IS SO HARD GAAHHHHHHHH!!!!!!!!!!!!!!!!!

• McDonald’s Combo Meal Model



Accomplishments

• Provided a more rigorous proof for the model from Agusto

• Created a more generalized model including all three types of
transmission of the Zika virus

• Proved the existence of a DFE and an EE for the new,
generalized model

• Proved global asymptotic stability of the DFE and the EE of
the new, generalized model using matrix and graph-theoretic
methods, respectively.

• Had lots of fun



Future Plans

• Use Xppaut to find numerical evidence of the existence of any
bifurcations

• Attempt to prove the existence of such bifurcations

• Revisit the model once more biological data and samples have
been collected to check for accuracy

• Dinner at Civil Kitchen and Brunch at Vandivort

• Pack

• Delete GroupMe

• Invest in mosquito repellent

• Get into grad school
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The End

Hasta la vista

#babies


