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The Zika Virus (ZIKV)

e Spread in three ways:

e Human — human (horizontal transmission)
o Mother — fetus (vertical transmission)
e Mosquito — human (vector transmission)

e The transmission from mother to fetus can cause certain birth
defects, specifically microcephaly.

e In the past 10 years, there have been outbreaks in the
Americas. Most research on the disease comes from Brazil.

e There is a lack of data on the transmission of Zika, so there
are not a lot of mathematical models available for the disease.



Why Are We Studying These Models?

e Previous REU students researched and analyzed a model of
the Zika virus that included vector transmission and horizontal
transmission.

e Other models, including the one we studied, differ because
they include only vector transmission and vertical
transmission, but not horizontal transmission. We improved
upon the model by combining all three types of transmission
into a generalized model.



Model from Agusto et al.
The Variables

Sa(t), Sw(t
EB(t) Ew(t
AB(t) Aw(t

IB(t) Iw(t

w(t) =
(1)
(1)
(1)
IBM(t) ,WM(t)
(1)
(1)
(1)
(1) =

Susceptible newly born babies and adults

Exposed newly born babies and adults

Asymptomatic newly born babies and adults

Infectious symptomatic newly born babies without microcephaly and adults

Microcephalic newly born babies and adults

Rs(t), Rw(t) = Recovered newly born babies and adults
Sy/(t) = Susceptible female mosquitoes
Ey(t) = Exposed female mosquitoes

ly(t) = Infected female mosquitoes



Model from Agusto et al.

The Parameters

mg = Birth rate
p = Fraction of adults and newly born babies who are asymptomatic
1 — p = Remaining fraction of adults and newly born babies who are infectious
o = Maturation rate
r,qa, q1,qr = Fractions of newly born babies who are infected and have microcephaly
1 — r = Remaining fraction of newly born babies who have microcephaly
n = Modification parameter
Bw, Bs = Transmission probability per contact of adults and newly born babies
pw, pg = Infectivity modification parameters in asymptomatic adults and newly born babies
ow, o = Progression rate of exposed adults and newly born babies
Yw, 8 = Recovery rate of asymptomatic and symptomatic adults and newly born babies
Lw, g = Natural death rate of adults and newly born babies
my = Recruitment rate of mosquitoes
By = Transmission probability per contact of susceptible mosquitoes
by = Mosquito biting rate
oy = Progression rate of exposed mosquitoes

1y = Natural death rate of mosquitoes



Model from Agusto et al.
Flow Chart of the Model
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Model from Agusto et al.
The Model

Av(As, Is, Aw, Iw, Ng, Nw)Sy(t) — (v + ov)Ev(t)
=ovEy(t) — pvlv(t)

Sp(t) = w8 — qamsAw(t) — qimelw(t) — grreRw(t) — Ag(lv, NB)Sa(t) — (o + 1g)Sa(t)
Ep(t) = As(lv, N8)Ss(t) — (a+ o5 + 1) Es(t)
Ap(t) = gargAw(t) + (1 — p)ogEp(t) — (o + 78 + 18)As(t)
Ig(t) = qimglw(t) + posEs(t) — (a +v8 + 1s)la(t)
Ism(t) = rarmgRw (t) — (a + pg)lem(t)
Rg(t) = (1 — r)armsRw(t) +v8As(t) + 18l8(t) — (o + pB)Re(t)
Sw(t) = aSp(t) = Aw(lv, Nw)Sw(t) — pwSw(t)
En(t) = Aw (v, Nw)Sw(t) — (ow + pw)Ew(t)
A (t) = (1= p)owEw(t) — (vw + pw)Aw(t)
Iw(t) = powEw(t) — (yw + aw)Iw(t)
Twm(t) = algm(t) — pwhwm(t)
Rw(t) = aRs(t) + ywAw(t) + ywlw(t) — pwRw(t)
Sy(t) =7mv — Av(4s, Is, Aw, Iw, N, Nw)Sv(t) — 1y Sv(t)
(t)=
(1)



Model from Agusto et al.

The Model
With

byl

Ag(lv, Ng) = nﬁBNﬂ
B
byl

Aw(lv, Nw) = ﬁWN Y
w

w + Aw +n(lg + pgA
M (As, Is, Aw, I, Ne, N) = yby (2 T owAw = 1lle +ppAs)
Ny +nNg

Ng = Sg + Eg + Ag + Ig + Igm + Rg
Nw = Sw + Ew + Aw + lw + lwm + Rw
Ny =Sy + Ey + Iy

Ny = Ng + Nw

where the total populations Ny and Ny are constant.



Dynamical Systems

Finding explicit solutions of this kind of system is impossible. The

goal in dynamical systems is to understand the qualitative behavior
of solutions even if they are not available, and to provide rigorous

results on the main properties of the system, including:

e Existence of attracting sets

Stability properties
Bifurcations

Chaos

Asymptotic Analysis



Equilibrium Points and Stability

Definition
Consider the system x’ = f(x) (f : R" — R"). There will exist an
equilibrium point when x’ = 0.

Local vs. Global Stability

e Local stability analyzes the stability in a neighborhood around
the equilibrium point.

o Linearization at the equilibrium point.

e Global stability describes the stability around a larger set
containing the equilibrium point, and global stability implies
local stability.

e Lyapunov functions allow the proof of global stability at the
equilibrium point.



Feasible Region

Definition
A set S C R" is said to be positively invariant with respect to
x' = f(x) if x(0) € S = x(t) € S for all t > 0.

We next prove that the feasible region, [ =y x Iy C R} x RY with

™
F'h = {Ss, Eg, A, Is, Iam, Ra, Sw, Ew, Aw, lw, lwm, Rw : Ny < u—i-l-SH(O)}

Fv={Sv,Ev,lv: Ny < Z—V + Ny (0)}
v

is positively invariant where we assume Sy < S7.
Note: This region is less restrictive than the one given in Agusto et al.



Feasible Region

Adding the first twelve equations and the last three equations of
the model, we obtain

Ny(t) = 78 — peNp(t) — pwNw(t) — a(Es(t) + Ap(t) + Is(1))
and Ny, (t) = my — py Ny(t), respectively.

Furthermore, to show that I is positively invariant, we use the
following inequalities:

Ny (t) < 78 — puNH(t)
N(/(t) =Ty — u\/N\/(t)

Where ppy = min{ug, pw}



Feasible Region

Now, consider:
Ny, (t) = 78 — prNk(t)

Ny (t) = Z—i [1 — e_“”t} + Ny(0)eHnt

Nt (0) = Ny(0)

Using theorem 6.1 from Hale, we get the following differential
inequality,

Ny(t) < 2 [1 - e_””t} + Npy(0)e—Hnt
KH

Ni(t) < 2B + Np(0), fort >0
HH



Finding Equilibrium Points

To solve our system f(x) = 0, we begin with the equation
R (t) = aRp(t) + ywAw(t) + ywlw(t) — pw Rw (t).

It makes biological sense that yw (Aw(t) + Iw(t)) > pwRw(t) for t > 0.
Considering yw >0, pw >0, Aw(t) >0, Iw(t) >0, and Rw(t) >0, we
see that:

YwAw +ywlw — pwRw > 0.

Then setting the initial R}, equation equal to zero shows that aRg(t) =0,
and therefore that Rg = 0.



Finding the Disease Free Equilibrium

Following the same procedure, we get the following:

From Equation We See That
Riy(£) =0 Rg =0, RS, =0, A%, =0, I, =0
RL(t) =0 A% =0, Ig=0
A(t) =0 Eg=0

ILa(6) =0 I8 =0
Tm(t) =10 I =0
E[()=0 Eg=0

1) =0 g =0

Ay (£) =0 Eg, =0

S,(t) =0 S = %
Sp(t) =0 Sg=— THB
Sl (t)=0 se, ane

"~ nw(a+ pg)



Finding the Disease Free Equilibrium

Therefore, the only equilibrium point of the original model is the disease free
equilibrium (Ep) where

_ o (e} [} o o le} o (e} o [} o le} o o o
Eo = (S8, Eg, AB: I8, Iem» R, Sws Ews AW s s Ry, SV, EVL 1Y)
Or, more specifically,

aTB

E0: 7(-737070707070777
o+ up pw(a+ pg)

o,o,o,o,o,w,o70>
122%

Therefore, the disease free equilibrium (&) is the only equilibrium point
of the system (unique), and no endemic equilibrium point exists.



Global Asymptotic Stability

Compartmentalization

Analyzing the global asymptotic stability (GAS) of the DFE

We approach the model as done by Shuai et al. We split the variables of the
model into two compartments: a disease compartment x € R and a disease
free compartment y € R, in the form:

FEs
A
/
/B 58
BM R
Ew 5
X = and  y=|Sw
Aw
Rw
Iw
Sy
Iwm
Ey
L v |

where

X' = F(x,y) = V(x,y) Y =g(x.y)



Global Asymptotic Stability
The F and V matrices

We define two vectors € R, F and V, which will be created from
the diseased compartment (the vector x) such that

by I
T/[",B\’B\{t)v(t) Sg(t)
0
0
rqrg Ry (t)
st
0
0
0

Bvby( Ny +nNg

0

lw+ewAw+n(lg+pgAg)

)Sv (¢)

(o + o+ pg)Es(t)
(o + 8 + 1p)Ag(t) — gamgAw(t) — (1 — p)ogEp(t)
(a +vg + 1B)le(t) — amplw(t) — pogEp(t)
(o + pp)lm(t)
(ow + pw)Ew(t)
(vw + Bw)Aw(t) — (1 = plow Ew(t)
(vw + pw)lw(t) — pow Ew(t)

pwlwm(t) — algu(t)

(kv + ov)Ey(t)

nyly(t) — oy Ey(t)

Where F contains the terms that contribute to new infection, and
V contains the terms that contribute to recovery and death.




Global Asymptotic Stability
Finding F and V

We then define two 10 x 10 matrices F and V, such that

F= [%—Q(O,yo)(Eo)] and V =

3—2(07}/0)(50)]

Where Eg is the DFE

E0: F—B,O,O,O,O,O,L,O,O,O,Oyoaﬂ-_\/aovo
o+ g pw (o + p1g) Hv

and

)

B [0y :] TV
= 50,RO7507R0a50 = 707 ) -
yo = (58, Rg, S, Riv» SV) <a+,u3 iw (o + 1g) ,Uv>



Global Asymptotic Stability
The F Matrix

_ .-
0 0 0 00 0 0 0 o "BV
NO
B
0 0 0 00 0 0 00 0
0 0 0 00 0 0 00 0
0 0 0 00 0 0 00 0
o
0 0 0 00 0 0 0 o Pwbvoiy
F= Ng,
0 0 0 00 0 0 00 0
0 0 0 00 0 0 00 0
0 0 0 00 0 0 00 0
nBvbvpeSy  nPvbySY 0 pwBvbySY  BybySY 0 0
Sy +nSg Sy, +nSg Soy+nSg Sy, +nSg
0 0 0 00 0 0 00 0o |



Global Asymptotic Stability
The V Matrix

[a+ 05 + s
—(1-p)os
—PoB
0
0
0

0
a+p+ B
0
0

0

0

0
a+p+us

0

0

0

0 0 0

0 0 —qaTE

0 0 0
a+pug 0 0

0 ow + pw 0

0 (I=-p)ow w+pw

0 —pow 0
—a 0 0
0 0 0
0 0 0

Iw + pw




Global Asymptotic Stability
The V! Matrix

L 0 0 0 o 0o o o 0]
ki
og(l—p) 1 mgqaow(l —p) 7BGA

kiko ko 0 0 k1kaks koks 0 0 0 0

TBOB 1 PoBqIoW T84

kiko 0 ko 0 kokaks 0 koks 0 0 0
0 0o 0 l 0 0 0 0 0 0

k3
0 0 0 o0 1 0 0 0 0 0
v-l_ kg
ow(l—p) 1
0 0 0 0 Keks e 0 0 0 0
pow 1
0 0o 0 0 Kaks 0 P 0 0 0
0 0 _a 0 0 o L o o
Hwks fw
1
0 0o 0 0 0 0 0 0 — 0
ke
0 00 0 0 0 o o v L
L pvks iy

where

ki =a+og+pug ka=a+yg+ug, ks=a+ug, ks=ow + pw, ks =yw + pw, ke = pv +ov



Global Asymptotic Stability

Definition of the Next Generation Matrix

Definition

Assume that F > 0 and V=1 > 0, which is biologically reasonable.
Then the next-generation matrix is A = FV 1, where entry Ajj

represents the expected number of new infections in compartment
i produced by infected individuals in compartment ;.




Global Asymptotic Stability
P and Ro

Definition
Given a matrix A and eigenvalues \;, (i = 1,...,n), the spectral
radius (p) of A is defined as p(A) = maxg1<j<n) |Ail-

Definition

Given matrices F and V/, the basic reproduction number (Rg) is
defined as p(FV~1).

Notes:

e Ry is the average number of people infected by one infected
person in a totally susceptible population.

e The spectral radius of A is not necessarily an eigenvalue of A.



Global Asymptotic Stability

Finding the Basic Reproduction Number (Ro)

Therefore, knowing F and V!, we can find our Next Generation
Matrix, (FV~1).

From this matrix, we found that
Ro = p(FV™Y) = VAE + CI

Where

__ovnBebySg

 (uv + ov)pyNg

_ ovBwbvSy

T (uy + ov)uv g,

_ ognBybySyl(1 — p)rs + Pl

" (a+op + e+ 8 + ne)(SY, +nSg)

_ owBvbySYI( — p)pw + Pl mgownBybySylap + qa(l — p)esl
(ow + uw)lw + ew)(Sy +nS8)  (ow + rw)lyw + uw)(a + up +v8)(Sy, + 1S3)




Global Asymptotic Stability

The f(x,y) Matrix

Following the systematic method established by equation (2.1) in

Shuai et al, we set

Then

f(x,y) =

by | Sg Sp
nBpby v(@ - @)
0
0

—rqrmgRw
Ss9 s
w _ Sw
Bwby Iy ( G, Nw)

0
0
0

0

*Note that not all terms are positive.

50
Buby(w + pwAw + nlls + ppAs)) (5o %50
wtnsg

f(x,y) = (F = V)x — F(x,y) + V(x,y)

VA
Ny +nNg




Global Asymptotic Stability

Lyapunov Functions

Definition
A function @ : R" — R € C!(E), with E an open set containing
the equilibrium point xg € R" is called a Lyapunov function if:

e Q(x)>0,Q(x) =0

d
* 2QU(1) <0

Disclaimer: Finding a Lyapunov function is difficult if not impossible.



Matrix Theoretic Method for GAS

Shuai's Theorem 2.1

To construct a Lyapunov function of the system under certain conditions:

Theorem (Shuai et al)

Let F, V, and f(x, y) be defined as before, and let wT >0 be a left
eigenvector of the nonnegative matrix V1F corresponding to the
eigenvalue *p(V=1F) = p(FV™Y) = Ro. If f(x,y) > 0% in [ C R}"™,
F >0,V >0, and Rg < 1, then the function

Q=wlV1x

is a Lyapunov function for the model on I.

Note: We were not able to directly apply this theorem to the model
because several of the conditions failed.



Matrix Theoretic Method for GAS

Shuai's Theorem 2.1

We were not able to apply this theorem to the model because
several of the conditions failed.

Even though the model does not satisfy all conditions of the
theorem, we will prove that w” V~1f(x, y) is non-negative, which
eventually impies that Q' is non-positive.

Therefore, @ = w’ V~1x can still be used as a Lyapunov function
for the original model.



Global Asymptotic Stability

LaSalle's Invariance Principle

Theorem (LaSalle's Invariance Principle)

Let T € D C R" be a compact positively invariant set with respect
to the system. Let Q : D — R be a continuously differentiable
function such that Q'(x(t)) <0inT (e. g. Q is a Lyapunov
function). Let S C T be the set of all points in I where

Q'(x(t)) =0. Let M C S be the largest invariant set in S. Then
every solution starting in I approaches M as t — oo, that is,

t—oo | zéM

lim [ inf ||x(t)—z||] =0




Global Asymptotic Stability
Theorem BMZ

Theorem (BMZ)

The disease free equilibrium of the Agusto model system is globally
asymptotically stable on I if Sy < SY, and Rg < 1.

Note: This theorem only requires two sufficient conditions to hold. This is a more general form than the work that
was done by previous researchers and REU students.



Global Asymptotic Stability

Convergence to the Disease Free Equilibrium

Proof.

Approach to prove global asymptotic stability of the DFE using LaSalle: (1) Find
a Lyapunov function for the system, (2) Find the set S in I where Q" =0, (3)
Show that the largest invariant set in S is the DFE.

(1) Consider the function,
Q=w"V1x

where w7 is a left eigenvector of the matrix V'~ Fcorresponding to the
eigenvalue Ry. In general, Rq is not necessarily an eigenvalue of V~1F. In our
case, we confirmed that Rg is an eigenvalue and that there is a non-negative
eigenvector w! corresponding to Rp. In fact, w’ has the form

0 ABOOCDOO0 E|

d
where A, B, C, D, and E are positive values. Note that EQI(X(t)) =
WV =wTVHF - V)x—wTV7(x,y) = (Ro— D)wx —wT V(x,y).



Global Asymptotic Stability

Convergence to the Disease Free Equilibrium

Also, computation in MatLab shows that w’ V= f(x,y) is
non-negative. x is also non-negative, so when Ry < 1,

d

EQI(X(t)) =(Ro—Dw'x —wTV=If(x,y) <0. Also, one can
observe that we have @ > 0, which implies that @ is indeed a
Lyapunov function in T.

(2) We want to find the set S = {x € Ry5 : Q" = 0}. When

Q' = 0, we must have that (Ro — )w'x = w’V~1f(x,y). And
since Rg < 1, we have (Ro — 1)w " x non-positive and
wTV~1f(x,y) non-negative. Thus, (Ro — 1)w’x =0, so
w!x=0. This only implies that Ag = Ig = Aw = Ilw =1y = 0.
Thus, SZ{XER15ZAB:/B:AW:IW:IVZO}. On this
set S, we are left with the following system:



Global Asymptotic Stability

Convergence to the Disease Free Equilibrium

Sg(t) = 75 — qrsRw(t) — (o + pg)Ss(t)
Eg(t) = —(a+ o + ug)Es(t)

Igm(t) = rqrmeRw (t) — (@ + pg)lem(t)
Rg(t) = (1 — r)grmeRw(t) — (o + pg)Ra(t)

Sw(t) = aSs(t) — pwSw(t)

Ew(t) = —(ow + pw)Ew(t)

Twm(t) = algm(t) — pwlwm(t)

Rw(t) = aRg(t) — pwRw(t)

Sy(t) = mv — pySv(t)

Ey(t) = —(uv +ov)Ev(t)

We next prove that all trajectories of solutions to this system go to the DFE.



Global Asymptotic Stability

Convergence to the Disease Free Equilibrium

(3) To solve each of the differential equations, we will use the
integrating factor for differential equations of the following form

y'+ay =f£(t)

t
y(t) = e_"’t/ e?*f(s)ds + Ce™®*
0
where C = y(0).
After rearranging Sg(t), the integrating factor method can be

applied.

(i)
Sg(t) + (o + ug)Ss(t) = 78 — qrreRw(t)

t
Sg(t) = e—(a+MB)t/ e(a+u5)s[ﬂ.B — grmeRw(s)]ds + Ce—(atus)t
0



Global Asymptotic Stability

Convergence to the Disease Free Equilibrium

Simplifying the expression gives

Sg(t) = e—(a+u3)t|: :B (e(a+HB)f —1)— a7 /t e(a+“B)SRW(s)ds] + Ce—(etrp)t
o+ up J0

T ke t
Sg(t) = B _ B ef(oH»uB)t _ qR"BE—(a+uB)t/ e(a+u3)sRW(s)ds + Cef(oH»uB)t
a+pug  a+tug 0

We can show that e~(@+#8)t [*e(a+he)s Ry (s)ds is bounded
which allows us to conclude that

: TB

lim Sg(t) = ———— = S3(t

Jm Se(t) = == = S&(t)
Likewise, the integrating factor method can be implemented for
the other differential equations.
(ii)

H _ _ o



Global Asymptotic Stability

Convergence to the Disease Free Equilibrium

Sw(t) + nwSw(t) = aSp(t)
t
Sw(t) = e‘“Wt/ elw*aSg(s)ds + Ce Wt
0
Substituting for Sg(s) from (2.10) gives

t s
Swi(t) = ae_“W[/ etws [W—B _ B s qRﬂ-Be_(Z)S/ e(z)rRW(r)dr + Ce_(z)s] ds + Ce HW?
0 z z 0

_ t rgetws  rgelhw—(2)s
= ae “W[/ -
0

—qpmgeltw —(@)s /s & Ry (r)dr+ CelPw = (s gsy ce—Hwt
z o+ g 0

Where z = a + pp

Similarly from the previous result,
arg

__Y"B _ e
pw (o + pg) W

g, wit) =



Global Asymptotic Stability

Convergence to the Disease Free Equilibrium

lim Ru(t) = 0= Ry,

(v) o

dim, Sv(t) = 20 = S0
(vi)

lim Ep(t) =0 = £§
(vii)

Jim lem(t) = 0= Igy
(viii)

t|—|>no10 Ew(t) =0= EI?V
(ix)

Jim hwm(t) =0 = hyy
(x)

H — — [



Global Asymptotic Stability

Stability of the Disease Free Equilibrium

By solving the system of differential equations, we were able to
prove that as t — oo, all possible trajectories of the system
approach the DFE. Thus, Eg is the largest and only invariant set in
S with respect to the system. Clearly, I' is compact and we have
shown that it is positively invariant with respect to the system.
Applying LaSalle's Invariance Principle, we conclude that the
disease free equilibrium point Ey is globally asymptotically stable
when Ry < 1.



The First Modified Model

Flow Chart of the First Modified Model
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The First Modified Model

The Model

Sp(t) = 7 — qamsAw(t) — qimelw(t) — grmeRw(t) — Ag(lv, Ng)Sa(t) — (o + pg)Se(t)
Eg(t) = As(lv, Ng)Sp(t) — (08 + 118)Ep(t)
)=
)=

Ap(t) = (1 - a — 2)qamgAw(t) + (1 — p)ogEp(t) — (& + ne)As(t)
Is(t) = (1 = d)qimplw(t) + clgampAw(t) + posEp(t) — (v8 + 1s)ls(t)

IBM t) = ngAWBAw(f) + dqlﬂ'Blw(t) (Ol + F‘B)IBM(t)

t) = qrmeRw (t) + 78AB(t) +v8/8(t) — (a + 1s)Ra(t)

t) = aSB(t) - Aw(lv Nw)SW(t) — ,U,Wsw(t)

=7y — Av(ls, lw, Ng, Nw)Sy(t) — pv Sy (t)
= Av(lg, lw, N, Nw)Sv(t) — (v + ov)Ev(t)
=ovEy(t) — pviv(t)

t
t
I(t

(
(
B(
(
Ri(
S (
(
Ay (t
(
(
(
(
(
(

Ep (1) = Aw(lv, Nw)Sw(t) — (ow + pw)Ew(t)
)= (1= plowEw(t) — (vw + pw)Aw(t)
Iw(t) = powEw(t) — (yw + aw)Iw(t)
IWM t) = Oé/BM(f) WIWM(t)
R (t) = aRa(t) + ywAw(t) + ywiw(t) — pwRw(t)
)
)
)



The First Modified Model

The Model
Where
byl
Ag(lv, Ng) = ijjvv v
B
byl
AW(’VyNW):BM;V¢
w
Iw +nlg
vz, s Ng, Nuw) = By b
v(lg, lw, N, Nw) = v V(NW+77NB)
And

Ng(t) = Sp(t) + Eg(t) + As(t) + Ig(t) + Iem(t) + Ra(t)
Nw(t) = Sw(t) + Ew(t) + Aw(t) + lw(t) + hwm(t) + Rw(t)
Ny(t) = Sy(t) + Ev(t) + Iv(t)



Conclusions from the First Modified Model

As we showed in the midterm presentations, we were able to prove
the global asymptotic stability of the unique disease free
equilibrium point for our first modified model. However, no
endemic equilibrium exists for this system of equations.



The Generalized Model of Zika Virus Dynamics

The Variables and Constants

Variables
Sg(t), Sw(t) = Susceptible newly born babies and adults
Eg(t), Ew(t) = Exposed newly born babies and adults
Ag(t), Aw(t) = Asymptomatic newly born babies and adults
Ig(t), Iw(t) = Infectious symptomatic newly born babies without microcephaly and adults
IBM(t) Iwm(t) = Microcephalic newly born babies and adults
Re(t), Rw(t) = Recovered newly born babies and adults
Sv(t) = Susceptible female mosquitoes
Ev(t) = Exposed female mosquitoes
ly(t) = Infected female mosquitoes
Constants

Ng = Number of newly born babies
Ny = Number of adults
Ny = Number of mosquitoes

Ky = Carrying capacity of mosquitoes



The Generalized Model of Zika Virus

The Parameters

%ty = Birth rate and natural death rate of newly born babies and adults
p = Fraction of adults who are infected
1 — p = Remaining fraction of adults who are asymptomatic
o = Maturation rate
qa. q1, % qe = Transmission rates from asymptomatic, infected, and exposed adults to susceptible babies, respectively
¢ = Fraction of newly born babies who are infected
d = Fraction of newly born babies who have microcephaly
1 — ¢ — d = Remaining fraction of newly born babies who are asymptomatic
1 = Modification parameter
%6 = Relative mosquito-to-human transmission probability of exposed mosquitoes to susceptible humans
Bw, Bg = Transmission probability per contact of adults and newly born babies
ow,op = Progression rate of exposed adults and newly born babies
Yw,v8 = Recovery rate of asymptomatic and symptomatic adults and newly born babies
% x = Transmission rate from infected adults to susceptible adults
% = Relative human-to-human transmission probability of exposed adults to susceptible adults
%1 = Relative human-to-human transmission probability of asymptomatic adults to susceptible adults
7y = Recruitment rate of mosquitoes
Bv = Transmission probability per contact of susceptible mosquitoes
by = Mosquito biting rate
% ¢ = Relative human-to-mosquito transmission probability of exposed humans to susceptible mosquitoes
oy = Progression rate of exposed mosquitoes
v = Natural death rate of mosquitoes



The Generalized Model of Zika Virus Dynamics

Flow Diagram of the Model

Ha

wEy + Iy + Ay

_.[n_v._.'i”._.]_. by o



The Generalized Model of Zika Virus Dynamics

The Model

Sa() = (N — S5()) — ("AAW“’ + "A’V’VVVV((;) * "EEW“))sB(t) — A& (Ev. Iy Ns)Sa(®)

E4(6) = An(Ev.fv. Ne)Sa) + ( LA A) LB ) 5,0 — (0 )it

Ap(t) = (1 — ¢ — d)ogEp(t) — (v& + 1n)As(t)
Ig(t) = copEp(t) — (v8 + nm)ls(t)

/BM(t) dogEg — (a+ un)lem(t)

Rg(t) = v8As(t) + v8l(t) — nrRs(t)

w(t) =

5 KEw + lw + wAW) Sw(t)

t) = pr(Nw — Sw(t)) = Aw(Ev, v, Nw)Sw(t) — X< Ny

Ely(t) = Aw(Ev, Iy, N) S () + x(W)swm (0w + m)Ew(?)
Aw(t) = (1 = p)ow Ew(t) — (vw + pr)Aw(t)

(t)
(t)
(t) = powEw(t) — (yw + pr) lw(t)
(t)=
(t)=

Twm () = alem(t) — porhwm (t)
R (t) = ywAw(t) + ywlw(t) — prRw(t)

Ky
Ey(t) = Av(Es, Is, Ew, Iw, Ng, Nw)Sy (t) — (uv + ov)Ev(t)
Iy(t) = ovEy(t) — pviv(t)

— N,
Sy(t) = (Wv - M) Ny — Av(Es, Is, Ew, lw, N, Nw)Sv (t) — pv Sy (t)



The Generalized Model of Zika Virus Dynamics

The Model

_ nBeby(lv +0Ev)

===

Bwbv(ly + 0Ey)

Nw

PEw +noEs + lw +nls
Nw +nNg

As(Ev, v, Ng)

Aw(Ev, lv, Nw) =

Av(Eg, I, Ew, lw, N, Nw) = By by (

The total population of adults (N ), the total population of newly-born babies (Ng), and the
total vector population (Ny) are given by:

Ng(t) = Sg(t) + Es(t) + As(t) + Is(t) + Ism(t) + Re(t)

N (t) = Sw(t) + Ew(t) + Aw(t) + lw(t) + lwm(t) + Rw(t)
Ny (t) = Sv(t) + Ev(t) + Iv(t)

NH(t) = NB(t) + Nw(t)

Where the total populations Ng, Ny, and Ny are constant.



The Feasible Region

The feasible region for the model is 3 =Ty x 'y C R}E X ]Ri with

Iy = {Sg, Eg,Ag, I8, Ism, Re, Sw, Ew, Aw, lw, lwm, Rw : Ny < Ny(0)}

Ny ={Sv,Ev,lv : Ny < Ky}

We now show that this region is positively invariant. Adding the first twelve
equations and the last three equations of the model, we obtain that Nj,(t) =0 and
Ny (t
W (6) = (61— L
Ky
all t >0, Ny(t) < Ny(0). Separating the other equation, we get

)(myv — pv), respectively. Then Ny(t) is constant, so for

——————N(t) =7 — pv. Integrating and simplifying, we get
Ny (t)
Ny (8)(1 = —=~)

Ky
Ky elmv—nv)t ) ) ] Kyc
Ny(t) = v R This expression can be rewritten as Ky — P v
Ky

Also, one can see that c = is non-negative. Thus, for all t > 0, Ny (t) < Ky.

Ny (0)



The Feasible Region

Now, we show that for non-negative initial points, solutions to the system stay
non-negative for all t > 0. That is, for example, if Sg(0) > 0, then Sg(t) > 0 for
t > 0. First, consider

Sy(t) = j(Ng — Se (1) (‘““W“)*"N"W"”(%”"EEW“)) Sa(t) ~ Aa(Ev. Iy, Ng)Sa(t)
Rearranging terms and utilizing an integrating factor, we get

A / E,
iSB(t) efozl Ag (I Np )+ (JARWL W I W) W(qu,(/V\;V((UU)HqE W(u))Jr,th _
dt
Jot Ap(ly Ng)+( AW GWIIEEW D)y,

.on[UHNBe ldu

9 (lyN, aaAw (u)+a; Iy (1) +ag Eyy (u) +
53(t1)ef° s(IvNg)+( Ay () )R — Sg(

fotl [MHNBe

0) =

A U E,
It Ae(ly,Ng)-+ (At gl e Ew(e) W(u))+HHu]du

Ap (U Ty (u Eyy(u
AB(’VA’B)"’(W)‘H’H“

t fotl
Sg(0) + Jo'lunNge

ef‘;l )\B(IVNB)+(qAAW(”)+q,(I(/VV|/(<’-,L;)+‘7EEW(“))+th

ldu

Se(t1) =

Thus, when starting data is nonnegative, Sg(t) > 0 for all t > 0. Similarly, we can
show that the other populations stay non-negative as well. Therefore, '3 is
positively invariant.



Finding the Disease Free Equilibrium

We found that the disease free equilibrium is given by:

Eo = {Ng,0,0,0,0,0, Nw,0,0,0,0,0, Ky,0,0}



Global Asymptotic Stability of the Disease Free Equilibrum

Theorem AP

Theorem (AP)
If Ro < 1, then the disease-free equilibrium Eq is globally asymptotically stable in

As before, we compartmentalize the model into disease and non-disease.

o [ Sg ]
Eg Ai
le Ism
Ew R
x=|Aw| and y= SB
w
w Twm
Ey Rw
L Iy i SV




Global Asymptotic Stability
The F and V Matrices

[ a(Ev, v, Ng)Sa(t) + (

aaAw(t) + qilw(t) + geEw(t) |
0 )sato)

(HEW +lw +¢AW)

Aw(Ev, v, Nw)Sw(t) + x Sw(t)

O

Av(Es, Is, Ew, /W Ng, Nw)Sv(t)
0

(08 + 1H)Es(t)
(v + pn)ls(t) — cogEp(t)
(ow + pH)Ew(t)
V= |(yw + pr)Aw(t) — (1 — p)owEw(t)
(Yw + pr)lw(t) — pow Ew(t)
(v +ov)Ev(t)
pviv(t) —ovEy(t)




Global Asymptotic Stability
The F Matrix

0 0 CIE,I\\,Ifj

0 0 0

0 0 XK

0 0 0

0 0 0
nBvbvéKy  nBvbvKy  BvbyoKy
Nw+nNg ~ Nw+nNg  Nw+nNp

0 0 0

BvbvKy
Ny +nNg

OnBeby nBsby|

0 0
0B8wby  Bwby
0 0
0 0
0 0
0 0




Global Asymptotic Stability
The V Matrix

(og + iy 0 0 0 0 0 0
—cop  YB+ UH 0 0 0 0 0

0 0 ow + H 0 0 0 0

V= 0 0 —(1=plow Yw + pH 0 0 0
0 0 —pow 0 YW + [H 0 0

0 0 0 0 0 py +oy 0

. O 0 0 0 0 —oy nv




Global Asymptotic Stability
The f(x,y) Matrix

_ 5 _
nBeby(lv +0Ey) <1 - Fi) +(qeEw + gaAw + qrlw) <7 -

(X(HEW +lw + PAw) + Bwby(lv + 9Ev)> (1 - ;ﬁw)
f(x,y) = v

0
Bvby(lw + 0l + ¢Ew + 77¢EB)<
0

K Sy )
Nw +nNg Ny +nNg




Global Asymptotic Stability
The V! Matrix

1

0
o+ HH
cop 1
(ow +un)(ve +un) e+ iH

0 0

0 0

0 0

0 0

0 0

0 0
0 0
1
S r— 0
ow + pH
ow(l—p) 1
(ow + ur)yw + pr)  Yw + pH
swp
(ow + pu)(Yw + 1)
0 0
0 0

0 0 0
0 0 0
0 0 0
0 0 0
! 0
Iw + pH

1

0
ov + pyv

oy 1

0 [
mv(ov +pyv) pyd
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Global Asymptotic Stability

The Irreducible Matrix V™1F

The matrix V~1F has the form (it's irreducible!):

A
As
Au
Aie
A
Ase Az Aog
(A3 Az Az

o O O o o
o O O o o

Az
Az
A1z
Aiz
A2
0
0

Az

As

Ais
Aig
Aos
Aog
Ass

Ay
Ay
Aig
Ao
Az
0
0

As ]
Ao
Ais
Az
Aos
0
0 |

Where each Ax denotes a strictly positive value.



Perron-Frobenius Theorem

Theorem (Perron-Frobenius)

Let A be an irreducible non-negative n x n matrix with spectral
radius p(A) = r. Then the following statements hold:

e ris a positive simple eigenvalue of the matrix A.

e A has a left eigenvector w with eigenvalue r whose
components are all positive.




Global Asymptotic Stability

Convergence to the Disease Free Equilibrium

Here, we see that the directed graph associated with V~1F is strongly
connected. This implies that V~1F is an irreducible matrix. Applying the
Perron-Frobenius Theorem, we conclude that the spectral radius of V~1F,
p(V~LF), is in fact a simple positive eigenvalue and has an associated left
eigenvector w that is strictly positive. Also, note that

p(V7IF) = p(FV™L). Thus, Ro = p(FV~!) is an eigenvalue of V~1F.
Thus, by Shuai's Theorem 2.1, Q = wTV-1lxisa Lyapunov function .
Again, @' = (Ro — 1)w'x —wT V71f(x,y). For Ro < 1, since
wl>0,x>0,V71>0,and f(x,y) >0,Q < 0. Now we consider the
set S={z€Ry5: Q' =0}. When Q' =0, we must have that

(Ro — D)w™x =wTV~1f(x,y). Using the same reasoning as above,

wTx =0. This implies that Eg = Ig = Ew =Aw =Ilw =Ey =1y =0,
that is, the diseased compartment x = 0. Then the set S can be rewritten
aS{ZER15ZEB:IB:EW:AW:IW:EV:IV:O}.



Global Asymptotic Stability

Convergence to the Disease Free Equilibrium

On this set S, we are left with the following disease-free system:

Sp(t) = pr(Np — Sa(t))
5(t) = —(v8 + 1H)As(t)
Igm(t) = —(a + pn)lem(t)
Rg(t) = 78As(t) — prRa(t)
w(t) = uH(Nw — Sw(t))
Twm(t) = algm(t) — prlwm(t)
Rw/(t) = —punRw(t)
Sy(t) = (rv — (v = “V)SV(t))sv(t) — v Sy (t)

Ky



Global Asymptotic Stability

Convergence to the Disease Free Equilibrium

We can show that everything goes to the DFE. Thus, Ej is the
largest and only invariant set in S. Also, since our region I3 is
compact and positively invariant, we can apply LaSalle's Invariance

Principle to conclude that the DFE is globally asymptotically
stable.



Existence of an Endemic Equilibrium

Shuai's Theorem 2.2

Theorem (Shuai’s Theorem 2.2)

Let F, V, f(x,y) be defined as above, and let T C Rf"’ be compact such
that (0,yp) € I and T is positively invariant with respect to the system.
Suppose that f(x,y) > 0 with f(x,y0) =0inT, F >0, V™1 >0, and
V~LF is irreducible. Assume that the disease-free system y' = g(0,y) has
a unique equilibrium y = yo > 0 that is GAS in R?. Then the following
holds:

o If Ry > 1, then the DFE is unstable and there exists at least one EE.

V.

As seen before, our system satisfies all the assumptions in this theorem.
Thus, when Ry > 1 our system has an endemic equilibrium:

E*:= (55, Eg: AB: Ig: Igms R St Bl Al s vy Riys SU» BV 1Y)

Note: We could no apply this theorem to the original model because the matrix V~1F was not irreducible



Global Asymptotic Stability

Shuai's Proposition 3.1

Given a weighted digraph with m vertices, we define the m x m weighted
matrix A with a; > 0 if a link exists from node j to node i/ and a;; = 0
otherwise, and we will denote such weighted digraph as (G, A). The
Laplacian of (G, A) is defined as

—dajj, i ./
L=1I;= v ) f ]
Zk;&i djk, 1 =J

From Kirchhoff's matrix tree theorem, we let ¢; be the cofactor of /;; in L.
If (G, A) is strongly connected, then ¢; >0 for 1 </ < n.



Global Asymptotic Stability

Shuai's Theorem 3.5

Theorem (Shuai Theorem 3.5)
Suppose that the following assumptions are satisfied:
e There exist functions D; : U — R, Gj; : U — R and constants aj; > 0
such that for every 1 < i < n, D} = D'|(sotutions) < D1 i Gij(z) for
ze U.
* For A = [aj], each directed cycle C of (G, A) has
> (s.ee(c) Grs(z) <0 for z € U, where E(C) denotes the arc set of

the directed cycle C.
Then, the function

D(z) =3 aDi(z)
=il

with constants c¢; > 0 as defined before, satisfies D' = D'|(sojutions) < O;
that is, D is a Lyapunov function for the system.

Note: This theorem was applied because the matrix-theoretic method used to prove global asymptotic stability for the DFE
cannot be applied to the EE.



Global Asymptotic Stability
Theorem WE DID IT

Theorem (WE DID IT)

For Ro > 1, the endemic equilibrium point E* is globally
asymptotically stable in I'3.




Global Asymptotic Stability

Finding a Lyapunov Function

Proof.

Define functions:

E
Dy =Sg — sgfsBms +Eg—Ef—Efln=2
Sh E;
D2 IB / —IBIn;*
Sw
D3 =Sw — Sy — SWInS*
D4:AW—A,*,V—A’,‘,VIn§:V
Iw
D53_IW—/W_IW|HI*
; Iy
D5b: /Wf /W IWIn /*
DSC_IW_IW_IW“]I*
Ey
Ds =Sy — Sy — 5V|nS +Ey — Ejy— EjIn =%
Sy E;,
Dr=1ly— /—/v|n"/

I*



Global Asymptotic Stability

Finding a Lyapunov Function

Differentiating, treating Ng, Ny, Ny as constants, applying the inequality
1—x+Inx <0, and simplifying yields:

n ——+1In E)
Aw  Aw Eg Ep

+q/lwsg<lﬂ—lnlﬂ—ﬁ+ln%)
Now \hy hy  Eg  Ep

A% SE (A Aw E
D; < qa XIV*B<W InZW _ =B
w

—In
"
Ny,

+qEE¢V5§<Ew Ew_@+.n@)
B, Ey E B

S5 /1y I, Es . Eg
by VB (Vv B 5B
et (/; I B
EYSE (Ey Eyv Eg Eg

byp=—V=B( =V a2 _=5 ==

+nBsby NG (E\*/ n E & +In E:

‘= a14G14 + 315261 5.+ 313G13+ a1,7G1,7 + 216G 6



Global Asymptotic Stability

Finding a Lyapunov Function

E Es | I
Dy < caBEg(—f -m=E_2= +In—f)
B EB IB IB

=a21G1

1% S /\/ /\/ EW EW
D'gﬁwaV*W(T—lnT— — +1In—;
3 NW IV IV EW EW

ErSt, [ E E, E E
+Bwbyo V*W(—\:fln Y W n ZV>
NW EV EV EW EW

— —In—— +In

N /;VS;;V<IW lw  Ew EW)

X % * * * *

NW IW IW EW EW
AwSw (A A E E
ey i Q0 QB )

NW AW AW EW EW

= a37G37+a36G36 + a3spG35b + 334G 4



Global Asymptotic Stability

Finding a Lyapunov Function

E
s < (1 phowy ( £

= 243G 3
Ds, < PUWE%(
1= 3d5,3 G53,3
Ds), < PU!/\/E%(
= a5p3Gsp3
Ds. < po WEffv<

‘= as¢3 G5c,3

Ew
2

Ew
Ey

Ew

—In

—1In

Ew Aw

] _
“E, Ay

E
W—/ﬂ—&-lnlﬂ)
Ep hy %

E;V_IT‘f‘ln—

Ew Iw /W>
wo

+1In

Aw
A

)



Global Asymptotic Stability

Finding a Lyapunov Function

E:, S Ew Ew Ey Ey
D'gﬁvbvqs%( — —In—-——-+In—~
6 Ny, +nNg \ Eyy E;, E E}

ELSY Eg Eg Ev Evy
—'—ﬁvbv(]ﬁ’l]*87\/>’< <7* —In T ” + In -
Ny, +nNg \ ES Ez Ej Ey,

1% G*
+Bvby = w2y n <ITW —In ITW - Ef‘: +1n E*Z)
Ny +nNg\Iy, 1, Ey O Ey

S, (ls . Is Ey . Ey
_eov (e 18 Ev . Ev
vy (/g " B "E

= a6,3Ge,3 + a6,1G6,1 + 36,5¢ G6,5¢ + 36,2 G2

E,  Ev I Iy
D§§JvE\*/< *—|n—*—7+|n7)
EV EV IV IV

= a76Gr6



Global Asymptotic Stability
Weighted Connected Graph




Global Asymptotic Stability

Cycles

Cycle 1: Gg1 + Gr6+ G377+ Gsa3+ G155 =0
Cycle 2: Gg1+ Gre+ Ga7+ Gaz+ Gia=0
Cycle 3: G1+ Grg+ Gs7+ G13=0

Cycle 4: Gg1+ Grg+ G177 =0

Cycle 5: Gg1+ Gs + Gsaz+ G150 =10

Cycle 6: G5,1 + G3,6 + G4,3 + Gl,4 =0

Cycle 7: Gg1+ Gsg+ G13=0

Cycle 8: Gg1 + Gi6 =0

Cycle 9: Go,1 + Go2 + Grg + G37 + Gsaz + G150 = 0
Cycle 10: G231+ G+ Grp+ G377+ Gaz+ Gra =0
Cycle 11: Gp1 + Gep + Grg+ G374+ G13 =0
Cycle 12: 62,1 + G6,2 + G7,6 + G1,7 =0

Cycle 13: Go,1 + G2 + G3 6+ Gsa3 + G155 =0
Cycle 14: Ga1+ Ggo + G35+ G433+ G1a =0
Cycle 15: Go1 + Geo + G3g+ G13 =0

Cycle 16: G231 + Gg2 + G16 =0

Cycle 17: Gsp3 + G355 =0

Cycle 18: Gsc 3+ Gesc + Gro+ G377 =0

Cycle 19: Gsc3 4 Ge5c + G3g =0

Cycle 20: Gg3+ Grg+ G377 =0

Cycle 21: Gg3+ G36 =0

Cycle 22: G4,3 + G374 =0



Global Asymptotic Stability

Existence of ¢;s

Then, by Shuai's Theorem 3.5, there exists constants ¢; such that

n

D= ZC,‘D;

i=1

is a Lyapunov function for the given system.

Next step: finding ¢; values.



Global Asymptotic Stability

Shuai's Theorems 3.3 and 3.4: Combinatorial Idenities

Theorem (Shuai's Theorem 3.3)
Let c; be defined as before. If ajj > 0 and d*(j) =1 for some i, j, then

Gag = ) Gaj

Theorem (Shuai's Theorem 3.4)
Let ¢; be defined as before. If ajj > 0 and d~(i) =1 for some i, j, then

m
Ciajj = E Ckaki
k=1




Global Asymptotic Stability
Weighted Connected Graph




Global Asymptotic Stability
Applying Shuai's Theorems 3.3 and 3.4

Taking node 2, we see that both the in-degree d—(i/) = 1 and the
out-degree d*(j) = 1. Therefore either theorem 3.3 or theorem 3.4
can be applied.



Global Asymptotic Stability
Applying Shuai's Theorem 3.3

We have ag» > 0, so i = 6 and j = 2. Therefore, we see

m
C636,2 = Z Qap k = @ax 1 + ax 2+ @ax 3 + @ax 4+ ©az s, + @ay 5p + ag 5c + aze + a7
k=1

Because the edges a2, a2 3, a24, a2 54, a25b, a25¢c, 32,6, a2,;7 do
not exist, these quantities all equal 0, and thus we are left with

C6d6,2 = C2a21



Global Asymptotic Stability
Applying Shuai's Theorem 3.4

Similarly, we have ay1 > 0, so i =2 and j = 1. Therefore, we see

m
Qaz = Z Ckak,2 = €1a1,2 + Cap 2 + €333,2 + C434,2 + C52353,2 + C5pasp 2 + C5ca5¢,2 + C6a6,2 + C7a7,2
k=1

Because the edges a1 2, a22, 32, 242, asa2, asp2, asc,2, ar2 do
not exist in figure 2, these quantities all equal 0, and thus we are

left with

Caz1 = Cpde,2



Global Asymptotic Stability
Applying Shuai's Theorems 3.3 and 3.4

We apply these two theorems to each node where d*(j) =1 or
d~(i) =1, and we find that

Caz1 = Cedp,2

C4a43 = C1a14 + C3334
C52d53,3 = C1d1 5,
C5pdsp,3 = €34835p
C5cds5c,3 = €34d6,5¢

Crare = C1a17 + C3asy



Global Asymptotic Stability

Finding the ¢; Values

We then set ¢c; =1, c3 = 1, and ¢g = 1 and solve for the remaining ¢; values:

=1
a2 PvbvnlgSy
Q=G T R (N* L o NE)
az1 CO’BEB(NW + T]NB)
G = 1
o _ G114 Gasa _ GaAly Sp + XVAR Sy
) = —
an3 Ny (1 = p)owEyy,
ais qilyy Sg
Ga=c120 = 7‘/\/* B*
a5a,3 pUWEWNW
azsp X/f/ﬂ/sfiv
Gb =G~ = —
asp,3 pO'WEWNW
o = 06 205¢ = Bvbvly, Sy
© Tascs  powEp(Ny, +nNg)
=1

_aai7t+aar  nBsbvlySpNyy, + Bwby Iy Sy Ng
are UVE\*/NENW




Global Asymptotic Stability

D Function

So we have

D =c1Dy + D2 + c3D3 + c4 Dy + 5,055 + c55Dsp 4 5 Dsc + c6Dg 4 c7D7

5 *
:<SB—SB SBInS* Ep — Ej — EB'"E*>+52</B I /BInIB>

+< EW> + C4<AW Ajy = Ay In )

/
+C5a</w—/W—IW|n I > + C5b<lw—/;;v—/;;v|anW> + 65C</W—/W—/W|n I )
w

SW

+<5V75V SyIn>Y 4 Ey — Ey— Ejln >+C7</Vf/\*, I In )
Sy E; Iy

This is our Lyapunov function.



Global Asymptotic Stability

Lyapunov Function D’

Now we consider the set S = {x € R{; : D’ = 0}. Differentiating, we get

Sg — S, Es — E; Ig — 1%
D= (2E_2Bs, 4 ZBE_"Bp) 4 o 2By
Ep Is

Sw—S; Ew — E; Aw — A;
+ (s, + R ) e WA,
SW EW AW

Iw — I Sy — S¢ Ey — E}
+ (cs5a + C56 + C5c) <—W WI(/V) + (—V VS(/ + Y v VE(/>

Iw Sy Ey
Iy — [
+ C7< VIV V/‘//>




Global Asymptotic Stability

D’ = 0 Converging to the Endemic Equilibrium

Ig — I
Since ¢; > 0 for all i, when D’ = 0, we have ( B /B> =0.

Is
Then there are two cases: (1) Ig — /5 =0 or (2)
E;l
l,’3 = cogEp — CUBI—*BB = 0. In case 1, we get /g = I3 as desired.
B

In case 2, solving yields Eg = ’E /B Since Z? is a positive
constant, this means that Eg and /g are positively correlated, a
biological contradiction, except when Ig = I§ and Eg = Ej. In
either case, we have Ig = /5.



Global Asymptotic Stability

D’ = 0 Converging to the Endemic Equilibrium

Similarly, considering

v—=1,\_(Aw—=Aw .\ _(Iw=1ly,\ _
< ™ Iv)—< A Ay | = ™ Iy ) =0 and

using the same reasoning, we can deduce that Iy = I,, Ay = A},

5,’3> = 0. Then

Sg — Sg
Se
either Sg = S or Sg = 0. Sg can be written as
P(S5—SB)+ e ( E,‘C,/MS/B - E,‘(,VMS/B> +nBebvo (—EX/EB — —EXI§B> :
where P is some positive constant. Setting this expression equal to
zero, we can see that in any case, we must have Sg = Sg. We can
similarly conclude that Sy = Sy, and Sy = S;,. Now, given this,
we can reason that Eg = Eg, Ew = E};,, and Ey = Ey,.

Iw = 1I}j,. In addition, we know that (




Global Asymptotic Stability

D’ = 0 Converging to the Endemic Equilibrium

Thus far, we have Sgp = S5, Eg = Eg, I =I5, Sw = Sy,

EW = E;V’ AW = A} ) /W = l\j\/’ SV = 5\*/, E\/ = E\*/, and

Iy = I,. Plugging these values into the original system, we are left
with the following:

5(t) = (1 —c— d)osEg — (v8 + 11H)As(t)
Igm(t) = dogEg — (a + pum)lem(t)
Rg(t) = v8As(t) +8lg — pHRB(1)
Twm(t) = alpm(t) — prlwm(t)
Rw(t) = ywAw +ywhy — prRw(t)



Global Asymptotic Stability

D’ = 0 Converging to the Endemic Equilibrium

Now, we use an integrating factor and take limits.
(i)
A(t) + (v8 + 1H)As(t) = (1 — c — d)osEp

t
Ag(t) = e_('YB+NH)t/ e(’ysﬂm)s[(l — c—d)ogEp]ds + Ce~ v+t

0
As(t) = (I1—c—d)ogEg B (1—-c—d)ogEg (st | Ca—(rpHm)t
B + UH B + HUH
Then . J -
iim Ap(t) = L= DoEEs _ 4
t=00 VB + HH



Global Asymptotic Stability

D’ = 0 Converging to the Endemic Equilibrium

Similarly,
(if)
. - dO‘BEE %
Jim Igm(t) = oty BM
(i)
A% 13
lim Re(t) = 1BAB T8l _ pe
t—o00 /’[’H
(iv)
. alf "
i o) = 8 —
(v) -
tll[go Rw(t) = = Rw

HH



Global Asymptotic Stability

D’ = 0 Converging to the Endemic Equilibrium

Therefore, we have shown that all trajectories in S go to the
endemic equilibrium,

E* = (S5, Efs Ab. 15 15us R8s Sivs Eiv Al i s Rivs St v 1)



we did it fellas

Thus, we can see that the largest and only invariant set in S is
exactly equal to the endemic equilibrium, E*. Therefore, invoking
LaSalle’s Invariance Principle, we conclude that the endemic
equilibrium E* is globally asymptotically stable in int(I'3) and
therefore is unique.



Model Graveyard

This project is dedicated to the many models that did not work, including:

The Super Special Awesome Modified Model
Morgan's Marvelous Modified Model, Maybe
The Model that We Think Will Work

McDonald's Combo Meal Model



Accomplishments

e Provided a more rigorous proof for the model from Agusto

e Created a more generalized model including all three types of
transmission of the Zika virus

e Proved the existence of a DFE and an EE for the new,
generalized model

e Proved global asymptotic stability of the DFE and the EE of
the new, generalized model using matrix and graph-theoretic
methods, respectively.

e Had lots of fun



Future Plans

e Use Xppaut to find numerical evidence of the existence of any
bifurcations

e Attempt to prove the existence of such bifurcations

¢ Revisit the model once more biological data and samples have
been collected to check for accuracy

e Dinner at Civil Kitchen and Brunch at Vandivort
e Pack

e Delete GroupMe

e Invest in mosquito repellent

e Get into grad school
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The End

Hasta la vista

#babies



