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Overview

I Projective Planes, Arcs, and Ovals

I Oval Counting

I Incidence Bounds



Incidence Systems

Before working with abstract projective planes, one must
understand incidence systems.

I An incidence system, S , is a triple (P,L ,I ) where P, L
are sets and I ⊂P ×L .

I We think of P as the set of points, L as the set of lines, and
I as the set of incidences between points and lines. Formally
speaking, if (p, `) ∈ I , we say the point p is incident to the
line `.

I S is a finite system if both P and L are finite.



Abstract Projective Planes

An incidence system, S , is a projective plane if it satisfies three
axioms:

1. Any two distinct points are incident with exactly one line.

2. Any two distinct lines are incident with exactly one point
(Every pair of lines has a unique intersection).

3. There exist four points such that no three are incident with
the same line, i.e a quadrilateral.



Finite Projective Planes

A projective plane, S is a finite projective plane of order n
whenever:

1. |P| = |L | = n2 + n + 1.

2. Each p ∈P is incident to exactly n + 1 lines and each ` ∈ L
contains exactly n + 1 points.

The easiest to draw examples are the projective planes of orders 2
and 3. From now on, we work only in the realm of finite projective
spaces of order n.



Arcs and Ovals

I An arc is a set of points such that no three are colinear. We
can think of quadrilaterals as arcs with four elements.

I An oval is an arc with n + 1 elements and a hyperoval is an
arc with n + 2 elements.

I Let O denote the set of all ovals in our projective plane.



What’s Next?

1. A nice bound on ovals that pass through a given set of points

2. Ongoing work in reducing this bound

3. Using the bounds from Part 1 to determine bounds on point
and oval incidences

4. Counting arcs



Our Little Lemma

Lemma 1.1: Let S ⊂P be non-empty and let
OS = {O ∈ O : S ⊂ O}. Then, if |S | = k, we have
|OS | ≤ (n − k + 2)nn−k+1.
The main idea of the proof is fairly simple but the formal write up
is 3

4 of a page.



Smaller and smaller

We can reduce the bounds found in Lemma 1.1 by using not so
nice methods. For starters, observe that we have over counted by a
lot.



Straightforward Incidence Bounds

We denote the set of all incidences between P and O as I (P,O).
Using this notation, Lemma 1.1 gives rise to two simple incidence
bounds.

1. If |P| = 1, then |I (P,O)| ≤ (n + 1)nn. This follows from
Lemma 1.1 by letting k = 1.

2. Similarly, if |P| = 2, then |I (P,O)| ≤ 2(n + 1)nn. The proof
of this result can be visualized by a venn diagram.

3. In the situation when |P| ≥ 3, there is no guarantee that all
the points of P can be contained on an oval. However, we
need not worry.



An Exact Incidence Count

Theorem 2.3: If |P| = k , then |I (P,O)| =
∑k

i=1 |Oi |.
I The main idea of the proof is similar to the cases when k = 2

and k = 3.

I In the general case, for every Q ⊂P such that |Q| > 1, the
coefficient of |OQ | in |I (P,O)| is 0 by a nice combinatorial
identity.



An Interesting Relation

We immediately have one incidence bound and a bound on the
number of ovals.

I Corollary 2.4: If |P| = k , then |I (P,O)| ≤ k(n + 1)nn.

I Corollary 2.5: |O| ≤ (n2 + n + 1)nn.

The second inequality comes from letting P be all points in the
projective plane and observing that
(n+1) |O| = |I (P,O)| = (n2 +n+1) |O1| ≤ (n2 +n+1)(n+1)nn.
The identity (n + 1) |O| = (n2 + n + 1) |O1| gives us one way to
count ovals.



Direct Arc Counting

The second way is by constructively counting arcs point-wise.

I Choose your first point p1. There are no restrictions so the
number of options is n2 + n + 1.

I Choosing a second point p2 is almost as easy. There are
n2 + n options.

I Things become interesting with the third point p3 since p3
can not be contained on the line determined by p1 and p2.

I Likewise, the point pi can not be on any of the lines
determined by the points p1, p2, · · · pi−1.



A Weak Lemma + Conjecture

Let Ak denote the set of all k-arcs in a projective plane of order n.

I Lemma: k < 7, |Ak | =
1

(k)!

∏k
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I When k ≥ 7, we run into issues. As a result, our counting
needs to be more careful.

I Conjecture: For k such that

n > k2−3k
4 +
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4 , |Ak | ≥
1
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Future Plans

I Tidying up this work and hopefully becoming published

I Finishing up undergrad and applying to PhD programs

I Solve some problems and get the PhD

I Solve some more problems and win the Fields Medal?
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