Point and Oval Incidences in a Projective Plane

Yunus Syed ¹

University of Illinois at Chicago

August 2nd, 2018

¹This work was supported in part by NSF Grant DMS 1559911 → ⟨ ₱ → ⟨ ₱ → ⟨ • → | •

Overview

- ▶ Projective Planes, Arcs, and Ovals
- Oval Counting
- ► Incidence Bounds

Incidence Systems

Before working with abstract projective planes, one must understand incidence systems.

- ▶ An incidence system, \mathscr{S} , is a triple $(\mathscr{P}, \mathscr{L}, \mathscr{I})$ where \mathscr{P} , \mathscr{L} are sets and $\mathscr{I} \subset \mathscr{P} \times \mathscr{L}$.
- ▶ We think of \mathscr{P} as the set of points, \mathscr{L} as the set of lines, and \mathscr{I} as the set of incidences between points and lines. Formally speaking, if $(p,\ell) \in \mathscr{I}$, we say the point p is incident to the line ℓ .
- $ightharpoonup \mathscr{S}$ is a finite system if both \mathscr{P} and \mathscr{L} are finite.

Abstract Projective Planes

An incidence system, \mathscr{S} , is a projective plane if it satisfies three axioms:

- 1. Any two distinct points are incident with exactly one line.
- 2. Any two distinct lines are incident with exactly one point (Every pair of lines has a unique intersection).
- 3. There exist four points such that no three are incident with the same line, i.e a quadrilateral.

Finite Projective Planes

A projective plane, $\mathscr S$ is a finite projective plane of order n whenever:

- 1. $|\mathscr{P}| = |\mathscr{L}| = n^2 + n + 1$.
- 2. Each $p \in \mathscr{P}$ is incident to exactly n+1 lines and each $\ell \in \mathscr{L}$ contains exactly n+1 points.

The easiest to draw examples are the projective planes of orders 2 and 3. From now on, we work only in the realm of finite projective spaces of order n.

Arcs and Ovals

- ► An arc is a set of points such that no three are colinear. We can think of quadrilaterals as arcs with four elements.
- ▶ An oval is an arc with n + 1 elements and a hyperoval is an arc with n + 2 elements.
- ▶ Let 𝒪 denote the set of all ovals in our projective plane.

What's Next?

- 1. A nice bound on ovals that pass through a given set of points
- 2. Ongoing work in reducing this bound
- 3. Using the bounds from Part 1 to determine bounds on point and oval incidences
- 4. Counting arcs

Our Little Lemma

Lemma 1.1: Let $S \subset \mathscr{P}$ be non-empty and let $\mathscr{O}_S = \{O \in \mathscr{O} : S \subset O\}$. Then, if |S| = k, we have $|\mathscr{O}_S| \le (n - k + 2)n^{n - k + 1}$.

The main idea of the proof is fairly simple but the formal write up is $\frac{3}{4}$ of a page.

Smaller and smaller

We can reduce the bounds found in Lemma 1.1 by using not so nice methods. For starters, observe that we have over counted by a lot.

Straightforward Incidence Bounds

We denote the set of all incidences between \mathscr{P} and \mathscr{O} as $I(\mathscr{P},\mathscr{O})$. Using this notation, Lemma 1.1 gives rise to two simple incidence bounds.

- 1. If $|\mathscr{P}|=1$, then $|I(\mathscr{P},\mathscr{O})|\leq (n+1)n^n$. This follows from Lemma 1.1 by letting k=1.
- 2. Similarly, if $|\mathscr{P}| = 2$, then $|I(\mathscr{P}, \mathscr{O})| \leq 2(n+1)n^n$. The proof of this result can be visualized by a venn diagram.
- 3. In the situation when $|\mathscr{P}| \geq 3$, there is no guarantee that all the points of \mathscr{P} can be contained on an oval. However, we need not worry.

An Exact Incidence Count

Theorem 2.3: If $|\mathscr{P}| = k$, then $|I(\mathscr{P}, \mathscr{O})| = \sum_{i=1}^{k} |\mathscr{O}_i|$.

- ▶ The main idea of the proof is similar to the cases when k = 2 and k = 3.
- ▶ In the general case, for every $Q \subset \mathscr{P}$ such that |Q| > 1, the coefficient of $|\mathscr{O}_Q|$ in $|I(\mathscr{P},\mathscr{O})|$ is 0 by a nice combinatorial identity.

An Interesting Relation

We immediately have one incidence bound and a bound on the number of ovals.

- ▶ Corollary 2.4: If $|\mathscr{P}| = k$, then $|I(\mathscr{P}, \mathscr{O})| \le k(n+1)n^n$.
- **►** Corollary 2.5: $|\mathscr{O}| \le (n^2 + n + 1)n^n$.

The second inequality comes from letting ${\mathscr P}$ be all points in the projective plane and observing that

$$(n+1)|\mathscr{O}| = |I(\mathscr{P},\mathscr{O})| = (n^2+n+1)|\mathscr{O}_1| \le (n^2+n+1)(n+1)n^n.$$
 The identity $(n+1)|\mathscr{O}| = (n^2+n+1)|\mathscr{O}_1|$ gives us one way to count ovals.

Direct Arc Counting

The second way is by constructively counting arcs point-wise.

- ▶ Choose your first point p_1 . There are no restrictions so the number of options is $n^2 + n + 1$.
- ▶ Choosing a second point p_2 is almost as easy. There are $n^2 + n$ options.
- ▶ Things become interesting with the third point p_3 since p_3 can not be contained on the line determined by p_1 and p_2 .
- Likewise, the point p_i can not be on any of the lines determined by the points $p_1, p_2, \dots p_{i-1}$.

A Weak Lemma + Conjecture

Let \mathcal{A}_k denote the set of all k-arcs in a projective plane of order n.

- ▶ Lemma: k < 7, $|\mathscr{A}_k| = \frac{1}{(k)!} \prod_{i=1}^k ((n^2 + n + 1) (\binom{i-1}{2})(n-1) + (i-1) (\binom{i-3}{2})(i-2)))$.
- ▶ When $k \ge 7$, we run into issues. As a result, our counting needs to be more careful.
- ▶ Conjecture: For k such that $n > \frac{k^2 3k}{4} + \frac{\sqrt{k^4 14k^3 + 73k^2 + 232k + 160}}{4}, |\mathscr{A}_k| \ge \frac{1}{(k)!} \prod_{i=1}^k ((n^2 + n + 1) (\binom{i-1}{2}(n-1) + (i-1) (\binom{i-3}{2})(i-2)))$

▶ Tidying up this work and hopefully becoming published

- ▶ Tidying up this work and hopefully becoming published
- Finishing up undergrad and applying to PhD programs

- ▶ Tidying up this work and hopefully becoming published
- Finishing up undergrad and applying to PhD programs
- Solve some problems and get the PhD

- Tidying up this work and hopefully becoming published
- Finishing up undergrad and applying to PhD programs
- Solve some problems and get the PhD
- Solve some more problems and win the Fields Medal?