The number of cyclic subgroups of a group: a brief introduction

MAKO Undergraduate Research Conference

Jamie Chavez Malacara
Mentors: Dr. Richard Belshoff and Dr. Les Reid
November 9, 2019
Missouri State University

Group theory fundamentals

What is a group?

A group is a set G combined with an operation o with the following properties:

- G is closed under o i.e. if g_{1} and g_{2} are in G then so is $g_{1} \circ g_{2}$.
- \circ is associative: for all $g_{1}, g_{2}, g_{3} \in G, g_{1} \circ\left(g_{2} \circ g_{3}\right)=\left(g_{1} \circ g_{2}\right) \circ g_{3}$.
- G has an identity element e such that for all

$$
g \in G, g \circ e=e \circ g=g .
$$

- G is closed under inverses: for all $g \in G$ there is some $g^{-1} \in G$ such that $g \circ g^{-1}=g^{-1} \circ g=e$.
H is a subgroup of G if it a subset of G that forms a group under the same operation as G.

A few special kinds of groups

- A group is abelian if for all $g_{1}, g_{2} \in G, g_{1} \circ g_{2}=g_{2} \circ g_{1}$.
- A group is cyclic if $G=\left\{g^{n} \mid n \in \mathbb{Z}\right\}$ This is denoted as $\langle g\rangle$ and we say that G is the group generated by g. The cyclic group of order n is denoted C_{n}.
- A group G is simple if $G \neq\{e\}$ and its only normal subgroups are $\{e\}$ and G.

Other Relevant Definitions

- The order of a group G is the number of elements in a group, which will be denoted as $|G|$.
- The order of an element g is the smallest natural number such that $g^{n}=e$ and will be denoted as $|g|$.
- The cross product of the groups G and H denoted $G \times H:=\{(g, h) \mid g \in G, h \in H\}$.

A few examples

Permutation Groups

Permutation groups, denoted S_{n} are the groups of possible permutations of the numbers $\{1, . ., n\}$. The order of S_{n} is $n!$. Its elements can be represented with "cycle notation" as follows: (a) is a 1-cycle, where a is sent to a (fixed), 1-cycles are often omitted. (a b) is a 2-cycle in which a is sent to b and b is sent to a. ($a b c$) is a 3 cycle in which a is sent to b, b is sent to c and c is sent to a, etc. The group operation is composition.

S_{3} : the group of permutations of $\{1,2,3\}$

The order of S_{3} is $3!=6$. It has the following elements: $\{(1),(12),(13)$, (2 3), (1 23 3), ($\left.\left.1 \begin{array}{ll}3 & 2\end{array}\right)\right\}$ where (1) is the identity element. The order of the elements of S_{n} is the least common multiple of the length of the cycles hence the elements have order 1, 2, 2, 2, 3, 3 respectively. Remember the definition of a cyclic group: $G=\left\{g^{n} \mid n \in \mathbb{N}\right\}$ so each element generates a cyclic group that has the same order as the element itself. The cyclic subgroups of S_{3} are therefore: $\{(1)\},\{(1),(1$ 2) $\},\{(1),(13)\},\left\{(1),\left(\begin{array}{ll}2 & 3\end{array}\right)\right\}$ and $\left\{(1),\left(\begin{array}{ll}1 & 3\end{array}\right),\left(\begin{array}{ll}1 & 2\end{array}\right)\right\}=\langle(123)\rangle=\langle(132)\rangle$

Dihedral Groups

Dihedral groups, denoted $D_{2 n}$ are the groups of symmetries of a regular n-gon. $D_{2 n}$ has order $2 n$ and can be generated by the following relations: $\left\langle r, s \mid r^{n}=s^{2}=e, r s=s r^{-1}\right\rangle$. All of the powers of r represent rotations and the elements containing an s represent reflections. The group operation is composition. From the last relationship it can be seen that $D_{2 n}$ is not abelian in general.

D_{8} : the group of symmetries of the square

The cyclic subgroups of D_{8} are $\{e\},\langle r\rangle,\langle s\rangle,\langle r s\rangle,\left\langle r^{2} s\right\rangle,\left\langle r^{3} s\right\rangle,\left\langle r^{2}\right\rangle$

Classifying groups by their number of cyclic subgroups

A few more definitions and basic results

- We define $\alpha(G)$ to be the number of cyclic subgroups of G divided by the order of G.
- $\alpha(G)=\alpha\left(G \times C_{2}^{n}\right)$
- for all finite $G, 0<\alpha(G) \leq 1$
- the order of $(g, h) \in G \times H$ is the least common multiple of the order of g in G and the order of h in H .

Some groups with $\alpha>3 / 4$

- As we saw before the cyclic subgroups of S_{3} are $\{(1)\},\{(1),(12)\}$, $\{(1),(13)\},\left\{(1),\left(\begin{array}{ll}2 & 3)\}\end{array}\right)\right.$ and $\left\{(1),(123),\left(\begin{array}{ll}1 & 2\end{array}\right)\right\}=\langle(123)\rangle=\langle(132)\rangle$ so as $\left|S_{3}\right|=6$ it follows that $\alpha\left(S_{3}\right)=5 / 6$. all groups of the form $S_{3} \times C_{2}^{n}$ for $n \geq 0$ have $\alpha=5 / 6$.
- The cyclic subgroups of D_{8} are $\{e\},\langle r\rangle,\langle s\rangle,\langle r s\rangle,\left\langle r^{2} s\right\rangle,\left\langle r^{3} s\right\rangle,\left\langle r^{2}\right\rangle$ so $\alpha\left(D_{8}\right)=7 / 8$ and all groups of the form $D_{8} \times C_{2}^{n}$ for $n \geq 0$ have $\alpha=7 / 8$.
- if $\alpha(G)=1$ then G is C_{2}^{n} for $n \geq 1$.

Other groups with known α

- Let $C_{3}=\left\{1, x, x^{2}\right\}$. Then the cyclic subgroups of C_{3} are $\{1\}$ and $C_{3}=\langle x\rangle=\left\langle x^{2}\right\rangle$. All groups of the form $C_{3} \times C_{2}^{n}$ for $n \geq 0$ have $\alpha=2 / 3$.
- Up to isomorphism all finite abelian 2 groups with $\alpha=1 / 2$ are of the form $C_{8} \times C_{2}^{n}$ for $n \in \mathbb{N}$.
- $\alpha\left(S_{4}\right)=17 / 24$. All groups of the form $S_{4} \times C_{2}^{n}$ for $n \geq 0$ have $\alpha=17 / 24$.
- $\alpha\left(S_{5}\right)=67 / 120$. All groups of the form $S_{5} \times C_{2}^{n}$ for $n \geq 0$ have $\alpha=67 / 120$.

Using GAP to check α

We can use the following code to check that $\alpha\left(S_{5}\right)=67 / 120$

G := SmallGroup(120,34);
$\mathrm{s}:=$ AllSubgroups(G);
sc := Filtered(s, g->IsCyclic(g)=true);
alpha := Size(sc)/Order(G);

The same code can be used to check $\alpha\left(S_{4}\right)=17 / 24$ by using the right group ID, namely SmallGroup $(24,12)$, in place of SmallGroup $(120,34)$.

Our project

More terminology

- An involution is an element of order 2
- Nilpotency is a generalization of the concept of abelian groups.
- In what follows $\tau(n)$ denotes the number of divisors of n , including 1 and n. For example, the divisors of 2 are $\{1,2\}$ so $\tau(2)=2$; the divisors of 4 are $\{1,2,4\}$ so $\tau(4)=3$; the divisors of 6 are $\{1,2,3,6\}$ so $\tau(6)=4$.

Existing work

- All groups with $\alpha>3 / 4$ have been classified by Garonzi and Lima (2018), using results from a paper titled "On groups consisting mostly of involutions" by Wall (1970).
- A partial classification of nilpotent groups with $\alpha=3 / 4$ was published by Tarnauceanu and Lazorec (2018).

Therefore we tried to find a complete classification of groups with $\alpha=3 / 4$, starting with a computational analysis using GAP. What follows are the conjectures we formed based on the results.

Lemma: The only dihedral groups with $\alpha=3 / 4$ are D_{16} and D_{24}

The number of cyclic subgroups of the dihedral group $D_{2 n}$ is $\tau(n)+n$. Therefore $\alpha=\frac{3}{4} \Rightarrow \frac{\tau(n)+n}{2 n}=\frac{3}{4} \Rightarrow \tau(n)=\frac{n}{2}$. We know that n and $\frac{n}{2}$ are divisors of n (the latter as n is even). The next largest possible divisor is $\frac{n}{3}$ so we can bound $\tau(n)$ by $\frac{n}{3}+2$ (with equality when every number between 1 and $\frac{n}{3}$ divides n). Hence
$\tau(n)=\frac{n}{2} \leq \frac{n}{3}+2 \Rightarrow 3 n \leq 2 n+12 \Rightarrow n \leq 12$ so all possible values of n are: $2,4,6,8$ or 12. As
$\tau(2)=2, \tau(4)=3, \tau(6)=4, \tau(8)=4, \tau(10)=4, \tau(12)=6$; it follows that $\tau(n)=\frac{n}{2} \Rightarrow n \in\{8,12\}$

Note $-\alpha\left(D_{16}\right)=3 / 4$ was a known result.

Conjectures

- Up to isomorphism the only non-nilpotent groups with $\alpha=3 / 4$ are $D_{24} \times C_{2}^{n}$ for $n \geq 0$.
- If G is nilpotent, has $\alpha=3 / 4$ and contains elements of order 8 it is of the form $D_{16} \times C_{2}^{n}$ for $n \geq 0$.
- If G is nilpotent, has $\alpha=3 / 4$ and all its elements have order less than 8 then it belongs to one of the families of groups with $|G| / 2-1$ involutions classified by Miller (1919).

