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Abstract. In Euclid’s The Elements, a unique circle in R2 is determined by three noncollinear

points. This is proven geometrically by constructing a triangle from the three points and showing
that the intersection of the perpendicular bisectors of two sides of the triangle gives a point that

is equidistant from all three vertices of the triangle [1]. This point is said to define the center of

a circle which circumscribes the triangle formed by the points. In our research, we demonstrate
that circles can be similarly determined in F2

q , the two-dimensional vector space over the finite

field Fq . However, the properties of F2
q cause some interesting cases to arise. Among these is

the possibility for two distinct points to have zero distance. Nevertheless, we were able to show

that three distinct noncollinear points which have nonzero distance from each other determine a
unique circle of nonzero radius.

1. Introduction

In our project, work was done specifically in F2
q. For completeness, we define the following:

Definition 1.1. The set G defines a group with respect to the binary operation ∗ if the
following are satisfied:

(1) G is closed under ∗.
(2) ∗ is associative.
(3) G has an identity element, e.
(4) G contains inverses.

Note that if ∗ on G is commutative, then G is called an abelian group

Definition 1.2. The set R defines a ring with respect to addition and multiplication if the
following are satisfied:

(1) R forms an abelian group with respect to addition.
(2) R is closed with respect to an associative multiplication.
(3) The following two distributive laws hold: x(y + z) = xy + xz and (x + y)z = xz + yz.

Note that if multiplication in R is commutative, then R is called a commutative ring.

Definition 1.3. The set F defines a field if the following are satisfied:

(1) F is a commutative ring.
(2) F has a unity 1 6= 0 such that 1 · x = x · 1 = x ∀ x ∈ F .
(3) Every nonzero element of F has a multiplicative inverse.
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Every field is an integral domain, meaning that there are no zero divisors.[2] Zero divisors
are nonzero elements of the integral domain, say a 6= 0, which can be multiplied by another nonzero
element, say b 6= 0, to yield zero: ab = 0.

Remark 1.4. Throughout this paper, we will use the following notation:

(1) a
b will represent (a)(b−1), where b−1 is the multiplicative inverse of b.

(2) a− b will represent a + (−b), where −b is the additive inverse of b.

Definition 1.5. The norm, or distance, between two points P1 = (x1, y1) and P2 = (x2, y2)
where P1, P2 ∈ F 2

q , denoted ||P2 − P1||, is (x2 − x1)2 + (y2 − y1)2.

Note that, because we are working in F2
q, it is possible for two distinct points to possess zero

distance.

Example 1.6. Consider Z2
5, the two-dimensional vector space over the finite field Z5. In this

particular field, modular arithmetic allows us to demonstrate zero distance between the points (2, 1)
and (0, 0). Substituting these points into the norm equation, we get ||P2−P1|| = (2−0)2+(1−0)2 =
4 + 1 = 5 = 0, since 5 ≡ 0 (mod 5).

Later, we will utilize more interesting consequences of the 0 norm problem.

Definition 1.7. The perpendicular bisector of the line segment P1P2, denoted bisector(P1, P2),
is given by:

bisector(P1, P2) =
{
P ∈ F2

q | ||P1 − P || = ||P2 − P ||
}

Note that the perpendicular bisector is a line and the slope is still the negative reciprocal of
the line it bisects. This will be demonstrated in Section 3.1.

Definition 1.8. A circle is defined as the set of all points equidistant from an arbitrary center.
In particular, a circle centered at C of radius r is given by:

Sr(C) =
{
P ∈ F2

q | ||C − P || = r
}

Theorem 1.9. Let P1, P2, P3 ∈ F2
q (q = pl, p > 2 is a prime, and l ∈ N) be three distinct,

noncollinear points that are nonzero norm from each other. Then, these points determine a unique
circle of nonzero radius in F2

q.

In order to prove Theorem 1.9, we must first prove several lemmas which allow us to justify
the nonzero claims of the theorem. The first lemma demonstrates that, when ||P2 − P1|| = 0, the
perpendicular bisector of P1P2 is the line containing points P1, P2 ∈ F2

q. The second lemma uses

the first to demonstrate that an arbitrary point P ∈ F2
q is zero norm from P1 and P2 if it lies on

the perpendicular bisector of P1P2 and ||P2 − P1|| = 0. The third lemma demonstrates that if the
square root of an element of Fq exists, then there are exactly two square roots that exist so long as
the element is not zero. The fourth lemma uses the third to demonstrate that if an arbitrary point
P ∈ F2

q lies on a zero line (see Definition 2.4), then it has exactly two zero lines that pass through
it. The fifth lemma uses the second and fourth to demonstrate that if P1, P2, and P3 are nonzero
norm from one another and are noncollinear, then their perpendicular bisectors do not intersect
at a point that is zero norm from P1, P2, and P3, thus ruling out circles of radius zero. Figure 1
displays a circle of radius zero over Z2

5 to give an example of what such a circle would look like.
We exclude circles of zero radius on the basis that the unique properties of F2

q are expected
to alter the behavior of circles to such a degree warranting a separate in-depth investigation. Our
proof of Theorem 1.9 is a direct proof which uses Definition 1.7 to algebraically derive expressions
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Figure 1. A circle of radius 0 centered at (2, 2) over Z2
5. It is worth noting that

in the case of a zero radius circle, the center of the circle is actually included as
part of the circle.

for the center of the circle defined by three distinct, noncollinear points, the existence of which
is verified by satisfying Definition 1.8. This proof also requires us to verify that the center exists
and is unique, and validate any division operations required to reach our conclusion. Figure 3
demonstrates a circle of nonzero radius over Z2

7.

2. Proof of Lemmas

Remark 2.1. Throughout the presented proofs involving zero lines, we multiply by (x2−x1)−1

and (y2 − y1)−1. This multiplication is valid as long as (x2 − x1)−1 and (y2 − y1)−1 exist, or in
other words, as long as x1 6= x2 and y1 6= y2. We can verify that this is the case by considering the
following:

If x2 − x1 = 0 and y2 − y1 = 0, i.e. x1 = x2 and y1 = y2, then we have only one point, P1 =
P2, a violation of the initial conditions of our proofs.

If we let one set of coordinates be equal, say x1 = x2, i.e. x2 − x1 = 0, and ||P2 − P1|| =
(x2 − x1)2 + (y2 − y1)2 = 0 (since we will be specifically investigaing 0 norms), then:

||P2 − P1|| = (0)2 + (y2 − y1)2 = 0

=⇒ (y2 − y1)2 = 0

=⇒ y2 = y1 Again, implying P1 = P2
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Figure 2. A circle of radius 1 centered at (2, 2) over Z2
7

We get a similar result if we let y1 = y2. Note that, since fields are integral domains (see Definition
1.3), it follows that the square root of 0 is 0 in our case. From this set of justifications, we are also
guaranteed that it is impossible to have a horizontal or vertical zero line (since x1 6= x2 and y1 6= y2
for any two arbitrary points on an arbitrary zero line).

Lemma 2.2. The perpendicular bisector of two distinct points zero norm apart is the line con-
taining the two points.

Proof. Suppose ∃ P1, P2 ∈ F2
q such that ||P2 − P1|| = 0. To show the perpendicular bisector

and line
←−→
P1P2 are the same, it suffices to show both lines contain two points in common.

To begin, we make note of the fact that, as demonstrated in 3.1, we have that the perpendicular
bisector of any two points ∈ mathbbF 2

q is, in fact, a line.

Now we want to show that both the line
←−→
P1P2 and the perpendicular bisector of P1 and P2 contain

two points in common. To do this, consider the definition of perpendicular bisector:

bisector(P1, P2) =
{
P ∈ F2

q | ||P1 − P || = ||P2 − P ||
}

If we pick point P1, which is on
←−→
P1P2, it follows that P1 also lies in bisector(P1, P2), since ||P1−P1|| =

0 and ||P2 − P1|| = 0, by assumption. This can also be shown for P2. Since P1 and P2 both lie in

the bisector, it follows that the bisector of P1 and P2 is the same line as
←−→
P1P2. �

Lemma 2.3. An arbitrary point on the perpendicular bisector of two distinct points zero norm
apart is zero norm from each of the two points.
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Proof. Let P0 ∈ F2
q be an aribitrary point on P1P2 (where P1, P2 ∈ F2

q) and ||P2 − P1|| = 0.
By Lemma 2.2 and Definition 1.7, it suffices to show ||P0 − P1|| = 0.

y =
y2 − y1
x2 − x1

(x− x1) + y1 Equation for P1P2

y0 =
y2 − y1
x2 − x1

(x0 − x1) + y1 Substituting P0 = (x0, y0)

=⇒ ||P0 − P1|| = (x0 − x1)2 +

[(
y2 − y1
x2 − x1

)
(x0 − x1) + y1 − y1

]2
Substituting y0 into ||P0 − P1||

=⇒ ||P0 − P1|| =
(x0 − x1)2

(x2 − x1)2
[
(x2 − x1)2 + (y2 − y1)2

]
Factoring out (x0 − x1)2(x2 − x1)−2

=⇒ ||P0 − P1|| = 0 ||P2 − P1|| = 0 by assumption.

�

Definition 2.4. We shall refer to the perpendicular bisector of (or the line through) two points
that are zero norm from one another as a zero line. Note that by Lemma 2.3, each point on the
zero line has a zero norm with each other point on the line.

Figure 3. A zero line in Z2
5. Note that any two points chosen on the line will

have a norm of zero.
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Lemma 2.5. If a ∈ Fq has a square root, then the equation x2 = a has exactly two solutions as
long as a is nonzero.

Proof. Suppose a 6= 0 has a square root, i.e ∃ b ∈ Fq such that b2 = a. Then,

x2 = a

=⇒ x2 = b2 (by substituting a with b2)

=⇒ x2 − b2 = 0

=⇒ (x− b)(x + b) = 0

=⇒ x = ±b

Here we note that, since b 6= 0, x will only have one solution as long as 2 6= 0. Consequently, x2 = a
has exactly two solutions as long as a has a square root and 2 6= 0.

�

Lemma 2.6. If an arbitrary point P0 lies on a zero line, there are exactly two zero lines passing
through P0.

Proof. Assume that P0 = (x0, y0) ∈ F2
q lies on a zero line. This implies that there exists an

(a, b) ∈ F2
q such that (x0 − a)2 + (y0 − b)2 = 0. Consequently, (y0 − b)2=−(x0 − a)2. In other

words, −(x0 − a)2 has a square root. Then, the equation (y0 − y)2 = −(x0 − a)2 has solutions
y0 − y = ±(y0 − b) =⇒ y = b, 2y0 − b, by Lemma 2.5. These values for y are distinct because
these two values can only be equal when y0 = b, which can not happen since a zero line can not be
horizontal by Remark ??. Thus, there are two vaules for y that are zero distance from (x0, y0), and
since (a, b) and (a, 2y0 − b) are nonzero norm from each other, they must lie on separate zero lines
by Lemma 2.3. �

Lemma 2.7. If three distinct points are chosen such that P1, P2, and P3 are nonzero norm from
one another and they are noncollinear, their perpendicular bisectors can not intersect at a point C
such that ||P1 − C|| = ||P2 − C|| = ||P3 − C|| = 0

Proof. Let P1, P2, P3 ∈ F2
q. Let C be the unique intersection of bisector(P1, P2) and

bisector(P2, P3). Furthermore, ||P1 − P2|| 6= 0, ||P1 − P3|| 6= 0, and ||P2 − P3|| 6= 0. For a
contradiction, consider the possibility that ||P1−C|| = ||P2−C|| = ||P3−C|| = 0. Then C shares a
zero line with P1, P2, and P3. Since, by Lemma 2.6, C has only two zero lines passing through it, at
least one pair of the points P1, P2, and P3 must lie on the same zero line. Since all points on a zero
line are zero norm from one another, this would imply that either ||P1 − P2|| = 0, ||P1 − P3|| = 0,
or ||P2−P3|| = 0, all of which are contradictions to the hypothesis that none of the points are zero
norm from one another. �

As a result of these lemmas, it follows that zero norm between any two of the three points
implies a zero radius circle, thereby allowing us to specify a circle of nonzero radius by maintaining
that the three points defining it are all nonzero norm from each other (See Theorem 1.9).

3. Proof of Theorem 1.9

To prove Theorem 1.9, we consider the following:

(1) Three noncollinear points, P1, P2, P3 ∈ F2
q, all nonzero norm from each other.
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(2) The perpendicular bisectors of P1P2 and P2P3.
(3) Some arbitrary point C = (x, y) which is said to lay on each of the perpendicular bisectors

at their intersection.

We want to show C exists and is a unique solution for the intersection of the bisectors. This
resulting solution will define the center of the circle containing P1, P2, P3.

3.1. Derivation of Perpendicular Bisectors.

To obtain the bisector of P1P2, let:

||P1 − C|| = ||P2 − C|| By Definition 1.7

=⇒ (x1 − x)2 + (y1 − y)2 = (x2 − x)2 + (y2 − y)2 By Definition 1.5

=⇒ x2
1 − 2x1x + x2 + y21 − 2y1y + y2 = x2

2 − 2x2x + x2 + y22 − 2y2y + y2

=⇒ x2
1 − 2x1x + y21 − 2y1y = x2

2 − 2x2x + y22 − 2y2y

=⇒ 2y(y1 − y2) + 2x(x1 − x2) = x2
1 − x2

2 + y21 − y22

=⇒ y = −
(
x1 − x2

y1 − y2

)
x +

x2
1 − x2

2 + y21 − y22
2(y1 − y2)

bisector(P1, P2)

Similarly, the bisector of P2P3 can be obtained:

||P2 − C|| = ||P3 − C|| By Definition 1.7

=⇒ (x2 − x)2 + (y2 − y)2 = (x3 − x)2 + (y3 − y)2 By Definition 1.5

=⇒ y = −
(
x2 − x3

y2 − y3

)
x +

x2
2 − x2

3 + y22 − y23
2(y2 − y3)

bisector(P2, P3)

Note that if either P1P2 or P2P3 are horizontal, then either y1−y2 or y2−y3 are zero. We must
then solve for x instead of y to avoid dividing by zero (it is easily verified that, in such a case, the
perpendicular bisector of 2 points, say (x1, y1) and (x2, y2) horizontal to one another is the vertical
line x = x1+x2

2 ).
Because, by Definition 1.7, we know that ||P1 − C|| = ||P2 − C|| and ||P2 − C|| = ||P3 − C||,

it follows that ||P1 − C|| = ||P3 − C|| and C is the point equidistant from points P1, P2, and P3;
namely, the center of the circle defined by these points (see Definition 1.8). Then, using the two
perpendicular bisectors we derived, we can obtain a generalized solution for the center C = (x, y).
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3.2. Solving for the Center.

To obtain the, x-coordinate of C, let:

bisector(P1, P2) = bisector(P2, P3)

=⇒ −
(
x1 − x2

y1 − y2

)
x +

x2
1 − x2

2 + y21 − y22
2(y1 − y2)

= −
(
x2 − x3

y2 − y3

)
x +

x2
2 − x2

3 + y22 − y23
2(y2 − y3)

=⇒ x

(
−x1 − x2

y1 − y2
+

x2 − x3

y2 − y3

)
=

x2
2 − x2

3 + y22 − y23
2(y2 − y3)

− x2
1 − x2

2 + y21 − y22
2(y1 − y2)

=⇒ x

(
(y1 − y2)(x2 − x3)− (y2 − y3)(x1 − x2)

(y1 − y2)(y2 − y3)

)
=

(y1 − y2)(x2
2 − x2

3 + y22 − y23)− (y2 − y3)(x2
1 − x2

2 + y21 − y22)

2(y1 − y2)(y2 − y3)

=⇒ x =
(y1 − y2)(x2

2 − x2
3 + y22 − y23)− (y2 − y3)(x2

1 − x2
2 + y21 − y22)

2[(y1 − y2)(x2 − x3)− (y2 − y3)(x1 − x2)]

To obtain the y-coordinate of C:

Substitute the solution for x into either bisector(P1, P2) or bisector(P2, P3)

=⇒ y =

(
−x1 − x2

y1 − y2

)[
(y1 − y2)(x2

2 − x2
3 + y22 − y23)− (y2 − y3)(x2

1 − x2
2 + y21 − y22)

2[(y1 − y2)(x2 − x3)− (y2 − y3)(x1 − x2)

]
+

x2
1 − x2

2 + y21 − y22
2(y1 − y2)

=⇒ y =
(x1 − x2)(x2

2 − x2
3 + y22 − y23)− (x2 − x3)(x2

1 − x2
2 + y21 − y22)

2[(x1 − x2)(y2 − y3)− (x2 − x3)(y1 − y2)]

It remains to be verified that this solution exists and is unique.

3.3. Justifications.

Remark 3.1. We know our solution for C exists if the denomintors for both x and y are nonzero;
namely, if 2[(y1−y2)(x2−x3)−(y2−y3)(x1−x2)] 6= 0 and 2[(x1−x2)(y2−y3)−(x2−x3)(y1−y2)] 6= 0.

Consider the case that the denominator is 0:

2[(y1 − y2)(x2 − x3)− (y2 − y3)(x1 − x2)] = 0

=⇒ (y1 − y2)(x2 − x3)− (y2 − y3)(x1 − x2) = 0 Dividing by 2

=⇒ (y1 − y2)(x2 − x3) = (y2 − y3)(x1 − x2)

=⇒ (y1 − y2)

(x1 − x2)
=

(y2 − y3)

(x2 − x3)
Slopes of P1P2 and P2P3 are equal

Similarly,

2[(x1 − x2)(y2 − y3)− (x2 − x3)(y1 − y2)] = 0

=⇒ (x1 − x2)(y2 − y3)− (x2 − x3)(y1 − y2) = 0 Dividing by 2

=⇒ (y2 − y3)

(x2 − x3)
=

(y1 − y2)

(x1 − x2)
Slopes of P1P2 and P2P3 are equal
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We have shown that when the denominators of both expressions are zero, the slopes of P1P2 and
P2P3 are equal. Since both segments contain a common point P2, this shows that in order for x and
y to have invalid solutions, P1, P2, and P3 must be collinear, a contradiction of the assumptions of
Theorem 1.9.

It is important to note that for both of these cases we divide by (x1−x2) and (x2−x3). However,
either of these quantities can be 0. Consequently, we must justify that when this happens the
denominator is still nonzero. Note that if x1−x2 = 0, then (y1−y2)(x2−x3) = (y2−y3)(x1−x2) =⇒
(y1 − y2)(x2 − x3) = 0. In order for this to be true, then either y1 − y2 = 0 or x2 − x3 = 0. If
y1 − y2 = 0, then y1 = y2, which means that P1 = P2, a contradiction. If x2 − x3 = 0, then
x1 = x2 = x3, which means that the points are collinear, a contradiction. A similar situation
occurs when x2 − x3 = 0.

Remark 3.2. The following verifies the uniqueness of our solution for C:
The point of intersection of two non parallel lines, defined by an arbitrary point (x, y), exists and

is unique. Suppose ∃ two lines y = m1x+b1 and y = m2x+b2, where m1 6= m2. We want to find the
intersection of these two lines. Well, m1x+ b1 = m2x+ b2 =⇒ (m1−m2)x = b2− b1. This gives a

solution as long as the lines in question are not parallel to one another. x =
b2 − b1
m1 −m2

. By inserting

this solution back into the equations for x, a solution for y can be obtained: y = m1

(
b2 − b1
m1 −m2

)
+b1

and y = m2

(
b2 − b1
m1 −m2

)
+ b2. Rewriting these expressions gives y =

m1b2 −m1b1 + m1b1 −m2b1
m1 −m2

and y =
m2b2 −m2b1 + m1b2 −m2b2

m1 −m2
which reduce to the solution y =

m1b2 −m2b1
m1 −m2

. Thus, the

intersection exists and is unique between two nonparallel lines.

4. Conclusion

We have proved directly that three noncolinear points, all of which are nonzero distance from
each other, determine a unique circle of nonzero radius in F2

q (q = pl, p > 2 is a prime, and l ∈ N).
Given three points which satisfy these conditions, it is possible to find the center of the circle
they determine by finding the intersection of the perpendicular bisectors of two sets of the points.
Using the definition of perpendicular bisector, it follows that this intersection is equidistant from
all three points, showing that the intersection determines the center of a circle containing the three
points. By the definition of a circle, deriving this center, showing it exists, and showing it is unique
sufficiently demonstrates the existence of the circle containing the three points.
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