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Abstract. We give an analytic proof for the Hausdorff convergence of the

midpoint or derived polygon iteration. We generalize this iteration scheme and

prove that the generalization converges to a region of positive area and becomes
dense in that region. We speculate on the centroid or derived polyhedron

iteration.

1. Background

First we justify, as an exercise, a few standard results about nested compact
sequences. Then, we examine the midpoint iteration scheme for convex polygons,
with remarks about concave starting conditions and regularity in the limit.

The convergence behavior of the midpoint iteration has been extensively studied
[4]. Our ultimate goal is to define a generalization of the midpoint procedure on the
plane and prove similar convergence results. This new iteration will be characterized
by an increasing number of vertices at each step. Our main result is the convergence
of these finite sets of vertices to a dense set of positive area.

Finally, we speculate on the centroid iteration for polyhedra and prove that the
limit is a set of positive volume.

2. Definitions and Conventions

Let d(·, ·) denote the Euclidean distance between two points in R2 and | · | the
Euclidean norm. Let c(·) denote the convex hull of a set. Denote set closure, with
respect to the standard metric topology by cl(·) and the open ball of radius ε > 0
about x by B(x, ε).

We identify a polygon with a convex hull of a finite number of affine independent
points on the real plane. Such a convex hull is necessarily bounded and closed. A
finite set of points, or vertices, are in general linear position if no three distinct
elements of the set are collinear.

3. Compactness of Polygons

Our iteration procedures will deal with sequences of subsets decreasing under
set inclusion. There are many standard results about these nested sequences of
compact subsets which can be applied to polygons on the plane. We prove some
here as an exercise for ourselves.

Suppose {Kn}n∈N is a nested sequence of compact subsets of the plane, such
that Kn+1 ⊂ Kn for all n ∈ N. By the Heine-Borel characterization of compact
sets in R2, each set is equivalently closed and bounded.
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Proposition 3.1. Suppose {Kn}n∈N is a nested sequence of nonempty compact
sets. Then the intersection

I =
⋂
n∈N

Kn

is nonempty and compact.

Proof. Define a sequence s = {sn}n∈N such that si ∈ Kj \Kj−1 if and only if i = j.
Each compact Kj \Kj−1 contains finitely many terms sn of the sequence.

We can identify a convergent subsequence {snk
}k∈N of s with limit σ ∈ K1 (and

so in all Kn), by compactness. If there exists an N such that m > N implies
σ 6∈ Km+1 \Km, then σ would be a limit point in KN \KN−1, contradicting the
fact that only finitely many snk

are in KN \KN−1. So I is nonempty.
In addition, I is bounded and closed, since I ⊂ K1 and arbitrary intersections

of closed sets are closed. Hence, I is compact in R2. �

Besides the usual area and perimeter, the diameter is another useful character-
istic of a polygon which we will use to prove convergence results.

Definition 3.2. Let diam(K) be the diameter of a set K. That is,

diam(K) = sup
x,y∈K

d(x, y).

Proposition 3.3. If K is compact in R2, then diam(K) is finite.

Proof. K is bounded, and there exists a point p ∈ R2 and M > 0 such that
d(x, p) ≤M for all x ∈ K. Then, by the triangle inequality,

diam(K) ≤ 2M.

�

Note that the previous proposition depends only on the boundedness of a com-
pact set K.

There is an immediate connection between the sequence of diameters of nested
compact sets and the diameter of their intersection.

Proposition 3.4. Let r ≥ 0. If diam(Kn) ≥ r for n ∈ N, then diam(I) ≥ r.

Proof. (Sketch) We claim that this proposition follows from the discussion in Propo-
sitions 3.8 and 3.9 on convergent subsequences of nested compact sets. For brevity,
we omit a rigorous proof.

�

Proposition 3.5. Let I =
⋂
n∈NKn be the intersection of Kn. If lim diam(Kn) = 0

then I = {x0} for some x0 ∈ K1.

Proof. Suppose that I is not a singleton. So diam(I) 6= 0, and I ⊂ Kn for all n
implies lim diam(Kn) > 0. �

Corollary 3.6. The diameters of the Kn converge to the diameter of their inter-
section; that is,

lim diam(Kn) = diam(I).
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Proof. In Proposition 3.4, let r = lim diam(Kn), since diam(Kn) is a non-increasing
sequence. So lim diam(Kn) ≤ diam(I). But diam(Kn) bounds diam(I) for arbitrary
n since I ⊂ Kn; so there is equality. �

We can also justify in interchanging the limits in these propositions because
diam(·) can be proven to be a continuous function with respect to the Hausdorff
metric, which we will now introduce.

We identify a convex polygon with the convex hull of a finite set V ⊂ R2 of
vertices in general linear position and seek an appropriate sense of convergence.
The Hausdorff metric allows us to define convergence such that if Kn limits to K,
the points of Kn become arbitrarily close to their nearest neighbors in K.

Definition 3.7. The Hausdorff distance of two nonempty compact subsets A and
B of a metric space is defined to be

dH(A,B) = sup

{
sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(b, a)

}
.

A sequence of nonempty compact subsets {Kn} converges in the Hausdorff metric
to K if lim dH(Kn,K) = 0.

The geometric iterations in the following sections produce sequences of nested
compact subsets of R2. We will prove convergence results with respect to this
Hausdorff distance; therefore, whenever we discuss the limit a of sequence of sets,
we mean that the sequence comes within every ε-ball of the limit set with respect to
the Hausdorff distance. (That is, limits of sequences of sets are taken with respect
to the metric topology induced by the Hausdorff distance on the set of compact
subsets of R2.)

Proposition 3.8. Let {Kn}n∈N be a sequence of compact subsets such that Kn+1 ⊂
Kn for all n ∈ N, and I their infinite intersection. Then

lim dH(Kn, I) = 0.

Proof. Since I ⊂ Kn for all n ∈ N and so supy∈I infx∈Kn d(y, x) = 0, we focus on
the quantity

sup
x∈Kn

inf
y∈I

d(x, y) = dH(Kn, I).

By compactness, there exist two sequences {xn} and {yn} such that

1. xn ∈ Kn \ I
2. yn ∈ I
3. d(xn, yn) = sup

x∈Kn

inf
y∈I

d(x, y)

We can identify two convergent subsequences {xnk
}k∈N and {ynk

}k∈N, with re-
spective limits α and β, such that for all k,

d(xnk
, ynk

) = sup
x∈Knk

inf
y∈I

d(x, y).

by a subsequence index argument. Now, α ∈ I necessarily. To see this, suppose for
contradiction that α ∈ Kn \ I for some n. Then α is a point of accumulation and
there exists an ε > 0 such that the open ball B(α, ε) ⊂ Kn \ I contains infinitely
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many points of {xn}. Then Kn \ I contains some xm for m 6= n, contradicting our
hypotheses.

Therefore

d(xnk
, ynk

) = inf
y∈I

d(xnk
, y) ≤ d(xnk

, α).

Passing to the limit, we have limk d(xnk
, ynk

) = 0. �

A similar property holds for countable unions of compact sets:

Proposition 3.9. Suppose {An} is a sequence of compact sets such that An ⊂
An+1 and An ⊂ K for all n ∈ N and some compact K. Let U = ∪nAn. Then
limAn = cl(U).

Proof. Since An is a subset of K, cl(U) is a bounded and closed set. So identify
two subsequences {ak} and {bk} in the compact cl(U) such that

1. ak ∈ U
2. bn ∈ An \An−1
3. d(an, bn) = sup

x∈U
inf
y∈An

d(x, y)

Then the same style of proof as in the previous proposition with the following
inequality yields the result

d(bk, ak) = inf
b∈Ak

d(b, ak) ≤ d(α, ak).

�

4. Midpoint Iteration

First solved by the French mathematician J.G. Darboux, the midpoint polygon
problem (sometimes called the derived polygon iteration) has been examined using
diverse techniques, including finite Fourier analysis and matrix products [1] [2] [3]
[4]. We present an elementary analysis proof of the midpoint polygon problem.

For notation, let P (n) be the set of vertices of the nth convex polygon P (n) in the

midpoint iteration. Denote the elements of P (n) by v
(n)
i . Use the iteration scheme

v
(n+1)
i =

1

2
(v

(n)
i + v

(n)
i+1).

Theorem 4.1. (Midpoint iteration): Given an initial set of vertices

P (0) =
{
v
(0)
1 , . . . , v

(0)
Q

}
in general linear position, the sequence of convex hulls c(P (n)) produced by midpoint
iteration converge in the Hausdorff metric to the centroid of c(P (0)).

Proof. Without loss of generality, suppose the centroid of P (0) is the origin. By
Proposition 3.8, the Hausdorff limit limP (n) is equal to the intersection

⋂
c(P (n)),

which we know is nonempty and compact.
Consider the sequence of diameters D =

{
diam(c(P (n)))

}
n∈N. Each diameter

diam(c(P (n))) = max
i,j
|v(n)i − v(n)j |

is the arclength of the maximum line segment contained in c(P (n)).
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We show by induction that the maximum edge length of c(P (n)) tends to zero
as n goes to infinity. Examine the edge lengths of c(P (1)), where indices are taken
modulo Q:

|v(1)i − v
(1)
i+1| =

1

2
|v(0)i − v

(0)
i+2| ≤

1

2
diam(c(P (0)))

sup
i
|v(1)i − v

(1)
i+1| ≤

1

2
diam(c(P (0))).

Generally, supi |v
(n)
i − v(n)i+1| ≤ ( 1

2 )n−1diam(c(P (0))). And the perimeter bounds
the diameter of a closed convex polygon, so

diam(c(P (k))) ≤
Q∑
i=1

|v(n)i − v(n)i+1| ≤ Q(
1

2
)n−1diam(c(P (0))).

We conclude lim diam(c(P (n))) = 0. By Proposition 3.5, lim c(P (n)) = {x0} for
some x0. But by calculation, we see that the centroid of P (n+1) is identically the
centroid of P (n), the origin. So 0 ∈

⋂
c(P (n)) is the limit of

{
c(P (n))

}
. �

Now we consider the regularity of the iterate polygons. On this topic, Darboux
proves:

. . . ils tendent à devenir semblables à des polygones semi-régulièrs
inscrits dans une ellipse. [1]
. . . [the iterates] tend to become semi-regular polygons, each of
which is inscribed in an ellipse.

We then reasonably expect the difference between arbitrary edge lengths of some
iterate P (n) to tend to zero as n tends to infinity.

Proposition 4.2. Let e
(n)
j denote the jth edge length |v(n)j −v

(n)
j+1| of the nth iterate

of an initial Q-polygon. Then

lim
n
|e(n)i − e(n)j | = 0 for any i, j indices modulo Q.

Proof. We see that:

|e(n)i − e(n)j | ≤ 2diam(P (n))

and by the proof of Proposition 3.1, lim diam(c(P (n))) = 0. �

By the previous proposition, given ε > 0, there is a large enough N such that
n > N implies

|e(n)i − e(n)j | < ε

for all i, j indices taken modulo Q.

5. Generalized Midpoint Iteration

In the previous section, we considered a midpoint iteration combining adjacent
vertices of a polygon of the plane. This process yields a natural generalization to
a midpoint iteration on finite planar sets which we call the Generalized Midpoint
Iteration (GMI).

Informally, the GMI on P (0) produces vertex sets P (n) containing every possible
midpoint combination of the previous vertex set P (n−1), and records how many
times p ∈ P (n) occurs as a midpoint by the multiplicity function µn : P (n) → N.
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The GMI is interesting to study because the number of vertices in each iterate
grows over time. Experimentally, this causes the GMI to converge to a region of
positive area as well as to become dense in this region — more complicated behavior
than the midpoint iteration, which converges to a single point.

Now, we formalize this new procedure.

Definition 5.1. (Generalized midpoint iteration): Let

P (0) =
{
p
(0)
1 , . . . , p

(0)
Q

}
⊂ R2

be an initial set of Q distinct vertices of a convex polygon. Identify P (0) with the
vector V (0) ∈ (R2)Q with entries

V (0) = (p
(0)
1 , . . . , p

(0)
Q )

Inductively define V (n) and P (n) as follows. Let T be any linear map such that

T : V (n−1) 7→

{
p
(n−1)
j + p

(n−1)
i

2
: i 6= j

}
:= V (n)

Define P (n) as the set of entries of V (n). Define the multiplicity µn(p) of p ∈ P (n)

as the maximal number of times p occurs in the vector V (n) as an entry. Then the
indexed collection of tuples:

P(k) = (P (n), µn)

is the generalized midpoint iteration of the set P (0).

Now, for a recursive formula of the multiplicity function µk, consider any p ∈ P (k)

for some k. Associate to p the set M(p) ⊂ P (k−1) × P (k−1) such that

M(p) =

{
(q

(i)
1 , q

(i)
2 ) : q

(i)
1 6= q

(i)
2 and

q
(i)
1 + q

(i)
2

2
= v

}
i∈J

(J = {1, 2, . . . , jv})

where jv is the number of such pairs. Next, define a function Θ : P (k) → N by

Θ(p) =

{ (
µk−1(p)

2

)
if p ∈ P (k−1) and µk−1(p) > 1

0 else

Then, we see that

1

2

∑
i∈J

µk−1(q
(i)
1 )µk−1(q

(i)
2 )

is exactly the number of times p occurs as an entry V (k) as the the midpoint of
distinct points in V (k−1). Similarly, Θ(p) is the number of times p occurs as an
entry as the midpoint of itself in V (k−1). This proves the following proposition:

Proposition 5.2. Suppose M(p) and Θ(p) are defined as above for p ∈ P (k). Then

µk(p) =
1

2

∑
i∈J

µk−1(q
(i)
1 )µk−1(q

(i)
2 ) + Θ(p).

The multiplicity µn(p) of a point p produced by the GMI on the nth iteration
determines the “longevity” of p. Observe that if µn(p) > 1, then p will be an
element of V (n+1), and if µn(p) > 2, then p will be an element of V (m) forever, for
all m ≥ n.



CONVERGENCE OF A GENERALIZED MIDPOINT ITERATION 7

Proposition 5.3. If there exists n ∈ N such that µn(p) > 2 for some p ∈ P (n),
then p ∈ P (m) for all m ≥ n.

Proof. µn(p) > 2 implies p ∈ P (n+1). Then, by Proposition 5.2,

µn+1(p) ≥
(
µn(p)

2

)
≥ µn(p).

This implies p ∈ P (n+2), since p ∈ P (n+2) if µn+1(p) > 1. Passing to the inductive
step, µk(p) ≥ µk−1(p) for all k > n; so p ∈ P (n) for all k > n. �

Definition 5.4. For any n ∈ N, if p ∈ P (n) satisfies the conditions of Proposi-
tion 5.3, then p is a fixed point of the GMI on P (0). Denote the set of fixed points
of P (n) on the nth step of GMI by F (n).

Recall that in the classical midpoint iteration, the intersection of convex hulls
provided the limit set of the polygons. The fixed points described in the previous
proposition will play an analogous role in defining the limiting set of convex hulls
of P (n) in the generalized midpoint iteration.

Proposition 5.5. Suppose p ∈ P (n) is given by x+f
2 for some x ∈ P (n−1) and

f ∈ F (n−1). Then p ∈ F (n).

Proof. Calculating the multiplicity of p,

µn(p) ≥ µn−1(x)µn−1(f) > 2

since µn−1(x) ≥ 1 and µn−1(f) > 2 �

In the GMI, fixed points always arise quickly if the initial set P (0) contains at
least four distinct points.

Proposition 5.6. Suppose |P (0)| = 4, where | · | denotes cardinality of a set. Then
|F (n)| ≥ 4 for all n > 2.

Proof. Without loss of generality, index P (0) =
{
p
(0)
i

}
i∈J

for J = {1, 2, 3, 4}.

For fixed i ∈ J , the point fi = 1
4 (3p

(0)
i + 2p

(0)
i+1 + 2p

(0)
i+2 + p

(0)
i+3) ∈ P (2), taking

indices modulo 4, has multiplicity at least 3 and is fixed. To see three distinct

constructions of this point from the original p
(0)
i by midpoints, consider

1

4

(
3p

(0)
1 + 2p

(0)
2 + 2p

(0)
3 + p

(0)
4

)
=

1

2

(
1

2
(p

(0)
1 + p

(0)
2 ) +

1

2
(p

(0)
1 + p

(0)
3 )) +

1

2
(
1

2
(p

(0)
1 + p

(0)
2 ) +

1

2
(p

(0)
3 + p

(0)
4 )

)
=

1

2

(
1

2
(p

(0)
1 + p

(0)
2 ) +

1

2
(p

(0)
1 + p

(0)
4 )) +

1

2
(
1

2
(p

(0)
1 + p

(0)
3 ) +

1

2
(p

(0)
2 + p

(0)
3 )

)
=

1

2

(
1

2
(p

(0)
1 + p

(0)
2 ) +

1

2
(p

(0)
2 + p

(0)
3 )) +

1

2
(
1

2
(p

(0)
1 + p

(0)
3 ) +

1

2
(p

(0)
1 + p

(0)
4 )

)
Ranging i in J , we have 4 distinct points in F (3), so |F (3)| ≥ 4, and by the

persistence of fixed points F (n) ≥ 4 for all n ≥ 3. �

Corollary 5.7. If |P (0)| > 4, then |F (n)| ≥ 4 for all n > 2.
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Proof. If A =
{
p
(0)
i

}
i∈J
⊂ P (0) has a cardinality of 4, then by the previous propo-

sition, the GMI on P (0) will produce four fixed points f1, . . . , f4 associated with
A �

6. Hausdorff convergence results for the GMI

We now prove several convergence results involving the sets of fixed points F (n),
iteration midpoints P (n), and their convex hulls c(F (n)) and c(P (n)) respectively.
In doing so, we justify our earlier observation that the GMI converges to a region
of positive area and that the GMI becomes dense in this region.

We observe that the sequence of convex hulls
{
c(P (n))

}
n∈N form a nested se-

quence of compact sets.

Proposition 6.1. lim c(F (n)) exists, with respect to the Hausdorff metric.

Proof. By the definition of fixed points, F (n) ⊂ F (n+1). This implies the convex
hulls c(F (n)) ⊂ c(F (n)) form an increasing sequence of subsets. Lastly, c(F (n)) ⊂
c(P (0)) for all n. So

{
c(F (n))

}
satisfies the conditions of Proposition 3.9. �

Proposition 6.2. lim dH(F (n), c(F (n))) = 0.

Proof. Let x ∈ c(F (k)) for some k. Then, by Proposition 5.6, there exist three
non-collinear points

{f1, f2, f3} ⊂ F (k)

such that x is in their convex hull. The midpoint iteration subdivides F (k) into four
congruent triangles. Inductively, n iterations of the midpoint procedure subdivides
F (k) into 4n congruent triangles.

Let Tn represent a triangle of the nth subdivision containing x. By Proposition
3.1, for arbitrary ε > 0, there exists an N such that for m > N , the vertices
{v1, v2, v3} of Tm are within ε distance of the centroid c of Tm. Then

inf
i
d(x, vi) ≤ sup

j
d(c, vj) < ε.

This implies

dH(F (n), c(F (n))) = sup
x∈c(F (k))

inf
y∈F (k)

d(x, y) < ε.

�

Proposition 6.3. lim dH(P (n), F (n)) = 0.

Proof. For notation, let

d(x,A) = inf
y∈A

d(x, y).

Since F (n) ⊂ P (n), the Hausdorff distance is equal to

dH(P (n), F (n)) = sup
x∈P (n)

d(x, F (n)).
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Let p′ ∈ P (n+1) arbitrarily. By definition of the GMI, there exists at least one
pair p, q ∈ P (n) such that p+q

2 = p′. Then, by comparing lengths of similar triangles
created by connecting relevant points,

d(p′, F (n+1)) ≤ 1

2
d(p, F (n)) ≤ 1

2
sup

x∈P (n)

inf
y∈F (n)

d(x, y).

Since p′ was arbitrary and P (n) and F (n) are finite sets, we may choose p′ such
that

sup
z∈P (n+1)

d(z, F (n+1)) = d(p′, F (n+1)).

This is precisely the inequality

dH(P (n+1), F (n+1)) ≤ 1

2
dH(P (n), F (n)).

�

Proposition 6.4. lim dH(P (k), c(F (k))) = 0.

Proof. By the triangle inequality,

dH(P (k), c(F (k))) ≤ dH(P (k), F (k)) + dH(F (k), c(F (k))).

The claim then follows from the previous Propositions 6.2 and 6.3. �

Theorem 6.5. The sequence of convex hulls of fixed points F (n) and the sequence
of convex hulls of P (n) have the same limit. That is,

lim c(F (n)) = lim c(P (n)) =
⋂
c(P (n)).

And consequently lim dH(P (n), c(P (n))) = 0 .

Proof. For notation, let F = lim c(F (n)) and P = lim c(P (n)). Seeking contradic-
tion, suppose F ( P. Then dH(F ,P) 6= 0.

By Proposition 6.2,
{
c(F (n))

}
n∈N is also a Cauchy sequence.

By compactness, choose p ∈ c(P (N)) and f ∈ c(F (N)) such that

d(p, f) = dH(c(P (N)), c(F (N))).

Since F ( P, d(p, f) is necessarily positive. Now, the midpoint of f and p is in

F (N+1) by Proposition 5.5. Denote g = p+f
2 . Then

dH(c(F (N)), c(F (N+1))) ≥ inf
y∈c(F (N))

d(g, y) ≥ 1

2
d(p, f) > 0.

Passing to the limit,

lim
N
dH(c(F (N)), c(F (N+1))) > 0,

contradicting the fact that
{
c(F (k))

}
is a Cauchy sequence. Therefore we conclude

F = P.
Consequently,

dH(P (n), c(P (n))) ≤ dH(P (n), c(F (n))) + dH(c(F (n)), c(P (n)))

and

lim dH(P (n), c(P (n))) = 0.
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�

We note that Proposition 6.3 establishes that the GMI converges to its fixed
points, certainly a set of positive area. Moreover, Theorem 6.5 establishes that the
GMI becomes dense in itself because the points themselves limit to their convex
hull.

7. Centroid iteration for polyhedra

The midpoint iteration yields another generalization, the centroid iteration for
polyhedra. (We could also call this the derived polyhedron iteration.) The centroid
iteration takes a polyhedron and forms a new polyhedron by taking the centroid of
every face to be a new vertex, which is analogous to taking the midpoint of each
side of a polygon.

Experimentally, the centroid iteration shares properties with the GMI in that
it usually limits to a region of positive volume and that it becomes dense in the
boundary of this region. It may also share the property of regularity in the limit with
the midpoint iteration, as simulations suggest that polyhedra limit to ellipsoidal
shapes. Unfortunately, simulating this process is very computationally expensive.

More work is required to see if the Hausdorff convergence results for the GMI
will suggest proofs for convergence results for the polyhedron centroid iteration.

References

[1] Darboux, G., Sur un probleme de geometrie elementaire, Bulletin des sciences mathematiques

et astronomiques 2e serie, 2 (1878), 298-304.
[2] Hintikka, Eric and Xingping Sun, Convergence of Sequences of Polygons, (2014).

[3] Ouyang, Charles, A Problem Concerning the Dynamic Geometry of Polygons (2013).

[4] Schoenberg, I. J., The finite Fourier series and elementary geometry, Amer. Math. Monthly,
57 (1950), 390404.


