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Abstract. Let f be a continuous piecewise linear plane curve parameterized

by the closed interval I = [0, 1]. We define a midpoint iteration on f in C(I,R2)
and obtain convergence results in the d∞ metric for the case when f has three

vertices.

1. Introduction

Let I denote the closed interval [0, 1]. Let C(I,R2) be the set of all continuous
functions from I to R2. The function d∞(f, g) = supt∈I |f(t)− g(t)| gives C(I,R2)
the structure of a Banach space.

Let a and b be points of the real plane R2. Then denote by the line segment Lb
a

the element of C(I,R2) with starting point a and endpoint b given by:

Lb
a(t) = tb+ (1− t)a

A function f ∈ C(I,R2) is a piecewise linear curve if it is a piecewise function
whose parts are line segments. It will be convenient to refer to the set V (f) of
vertices of f , where we adopt the convention of enumerating the vertices in the
order that f passes through them, starting with f(0) and ending with f(1).

Given a continuous piecewise linear curve, we define a sequence of continuous
piecewise linear curves in the following way.

Definition 1.1. Let f ∈ C(I,R2) be a piecewise linear curve. Inductively define
f0 = f . Then, for subsequent n in N, let

Vn =

{
1

2
(vi + vi+1) : vi ∈ Vn−1

}
∪ {f(0), f(1)}

and define fn as the continuous piecewise linear function which connects the vertices
in Vn in the natural order, starting from f(0), to 1

2 (f(0) + v1), and ending with
f(1). Call {fn}n∈N the midpoint sequence of f .

In the notation above, the set Vn = V (fn). We illustrate this procedure with an
example.

Example: Let f be the curve which connects the points (0, 1), (0, 0), and (1, 0) of
R2, in that order. Then f1 has the vertex set:

V (f1) = {(0, 1), (0, 1/2), (1/2, 0), (1, 0)}
We will refer to this example curve as the right angle curve. Elements of the
midpoint sequence of the right angle curve are shown in Figure 1.
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Figure 1. The midpoint sequence of the right angle curve

The image above suggests the possibility of convergence in C(I,R2) of this midpoint
sequence to the line segment connecting (0, 1) to (1, 0), shown in green. Denote
this line segment by L(t). We will establish this convergence with our main result:

Theorem 2.3 The midpoint sequence {fn}n∈N of the right angle curve converges

with respect to the d∞ metric of C(I,R2) to L(t).

Theorem 2.3 will have an application towards O’Rourke’s problem [1], which can
be stated for subsets of R2 as follows.

Problem 1.2. Let V0 ⊂ R2 be a finite set of vertices, and c(V0) its convex hull.
Inductively define a sequence of nonempty subsets:

Vn =

{
1

2
(v + w) : v, w ∈ Vn−1 and v 6= w

}
That is, each Vn is the set of midpoints of all possible pairs of distinct points in
Vn−1. What is the limit of the corresponding sequence {c(Vn)}n∈N of convex hulls?

The fact that {c(Vn)}n∈N is a sequence of compact, nonempty and nested subsets

of R2 implies the limit exists with respect to the Hausdorff metric [2]. We will use
the midpoint sequence of the right angle curve to study the topological boundary
of this limit in the case that V0 is the set of vertices of the unit square.

2. Convergence of the Right Angle Curve Sequence

In this section, let f be the right angle curve, defined previously, and {fn}n∈N
its midpoint sequence. Denote L(t) = L

(1,0)
(0,1)(t) for brevity. To show {fn}n∈N

converges uniformly to L(t), we will need a proposition concerning the limit of
sums of binomial coefficients.
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Proposition 2.1. Let P2n = 1
22n

∑n−1
j=0

(
2n
j

)
, the partial sum up to n − 1 of the

2nth row of binomial coefficients. Then limP2n = 1
2 .

Proof. By Pascal’s relation:

22n =

2n∑
j=0

(
2n

j

)
= 2

n−1∑
j=0

(
2n

j

)
+

(
2n

n

)
We can rewrite this equality as:

22n−1 − 1
2

(
2n
n

)
22n

=
1

22n

n∑
j=0

(
2n

j

)
= P2n

By Stirling’s approximation, for sufficiently large n

1

22n+1

(
2n

n

)
=

1

22n+1
(1 + εn)(

22n√
πn

)

where εn > 0 is a small constant depending on n such that lim εn = 0. From here,
we can conclude

lim
1

22n+1

(
2n

n

)
= lim

1 + εn
2
√
πn

= 0

Using this limit result in the limit of P2n yields

limP2n =
1

2
− lim

1

22n+1

(
2n

n

)
=

1

2

�

Note that if k = 2n is even, then there are an odd number of vertices in V (fk).
Furthermore, there exists exactly one “symmetric” vertex of the form ( a

22n ,
a

22n ) for
some natural number a. For example, if k = 2:

V (f2) = {(0, 1), (0, 3/4), (1/4, 1/4), (3/4, 0), (1, 0)}

and the vertex (1/4, 1/4) is symmetric in the x and y coordinates. The distance
from (1/4, 1/4) represents d∞(f2, L).

We will establish that the numerator of the symmetric vertex of V (f2n) is a
partial sum of binomial coefficients, leading to our convergence result.

Proposition 2.2. For all n ∈ N, the vertex set V (f2n) contains a single symmetric
vertex of the form (P2n, P2n), where:

P2n =
1

22n

n−1∑
j=0

(
2n

j

)
Proof. For convention, enumerate the vertices of V (f2n) = {v1, . . . , v2n+3} in the
order that f2n passes through them, starting from v1 = (0, 1) and ending at (1, 0).

The example above for V (f2) proves the case n = 1. We also observe that the
x−coordinate of (0, 3/4) is P2− 1

22

(
2
0

)
, and the x−coordinate of (3/4, 0) is P2+ 1

22

(
2
1

)
.

So suppose the proposition holds for P2j , where j < n, and that the x−coordinate

of the vertex vn+1 is P2n− 1
22n

(
2n
n−1
)
, and the x−coordinate of vn+3 is P2n+ 1

22n

(
2n
n

)
.

The vertex vn+2 is the symmetric vertex, with x−coordinate P2n.
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Figure 2. Visual representation of d∞(f2, L) as the purple line
segment from the image of f2 to the image of L(t).

It is a straightforward (but tedious) calculation to show

P2n +
1

22n+2
(

(
2n

n

)
−
(

2n

n− 1

)
) =

1

22n+2

n∑
j=0

(
2n+ 2

j

)
= P2n+2

But the quantity P2n + 1
22n+2 (

(
2n
n

)
−
(

2n
n−1
)
) is the x−coordinate of the symmetric

vertex in V (f2n+2) by the midpoint iteration. And by symmetry of the calculations,
the y−coordinate of the symmetric vertex in V (f2n+2) is also P2n+2. This concludes
the induction. �

Note from Figure 2 that the symmetric vertex of V (f2n) is the point on the
image of f2n farthest from L(t), in terms of perpendicular distance. We may now
prove our main result.

Theorem 2.3. The midpoint sequence {fn}n∈N of the right angle curve converges

with respect to the d∞ metric of C(I,R2) to L(t).

Proof. Let n ∈ N. The line segments comprising f2n determine a parameterization
by t ∈ [0, 1] such that, by proposition 3.2

d∞(f2n, L) = sup
t∈[0,1]

|f2n(t)− L(t)| = |(P2n, P2n)− (
1

2
,

1

2
)|

Using proposition 3.1, we pass to the limit and see

lim |(P2n, P2n)− (
1

2
,

1

2
)| = 0

Now, the midpoint sequence {fn} is a monotone sequence with respect to the partial
order on C(I,R2), which is to say

fn(x) ≤ fn+1(x) ≤ fn+2(x)

for all x ∈ I. This implies the entire sequence fn converges uniformly to L(t). �
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Theorem 3.3 implies a corollary regarding continuous piecewise linear curves of
any three vertices.

Corollary 2.4. Let f be a piecewise linear curve connecting three distinct non-
collinear points a, b, c of the plane, in that order, and let {fn}n∈N be its midpoint

sequence. Then fn converges in C(I,R2) to Lc
a(t) with respect to the d∞ metric.

Proof. By shifting b to the origin, we can assume a and c are the only nonzero
vertices of f .

Then by modifying the argument in proposition 3.2 we establish the existence
of a unique symmetric vertex v2n in V (f2n) such that

v2n = P2n(a+ c)

v2n is the furthest point on the image of f2n from the image of Lc
a(t). But

limP2n(a+ c) = 1
2 (a+ c). Conclude lim d∞(fn, L

c
a) = 0. �

3. n-point curves and applications to O’Rourke’s conjecture

As a standalone question, one may ask if a similar convergence result holds for
“n-point” continuous piecewise linear plane curves. In fact, numerical experiments
in MATLAB suggest the following conjecture for n-point curves.

Conjecture 3.1. Let f ∈ C(I,R2) be a piecewise linear curve connecting any n
points of the plane. Let {fn}n∈N be its midpoint sequence. Then the fn converge

uniformly to a line segment L(t) in C(I,R2) such that L(0) = f(0) and L(1) = f(1).

This plausible conjecture has an interesting geometric interpretation. Given a
polygonal path on the plane, the midpoint procedure would converge to the line
segment between the endpoints of the path and form a closed polygon. This result
would be in the spirit of the Darboux midpoint polygon problem [3], made famous
by I.J. Schoenberg in the American Mathematical Monthly. [4]

As an application, we may use Theorem 2.3 towards understanding O’Rourke’s
problem in the following way. In the case where V0 is the four corners of the unit
square, numerical experiments suggest that the topological boundary of the limit
of the c(Vn) contains no line segments. We can identify each side of V0 with a right
angle curve. Then Theorem 2.3 implies that vertices must be added infinitely many
times onto the boundaries of the c(Vn) during the limit process, independently from
the separate midpoint procedures occurring on each corner of the boundary, since
otherwise the c(Vn) would necessarily converge to a set with a piecewise linear
boundary.
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