An Alternative Proof of the Newton-Girard Formula for Non-Commutative Symmetric Polynomials

Advisor Dr. Samuel Chamberlin, Park University; Tim Fay, William Jewell College

MAKO Undergraduate Mathematics Research Conference Springfield, MO November 15th, 2025

Symmetric Polynomials

Definition.

Fix a positive integer n. A **symmetric polynomial** is a polynomial in the n variables x_1, x_2, \ldots, x_n such that any permutation (or switching) of the variables leaves the polynomial unchanged.

Symmetric Polynomials

Definition.

Fix a positive integer n. A **symmetric polynomial** is a polynomial in the n variables x_1, x_2, \ldots, x_n such that any permutation (or switching) of the variables leaves the polynomial unchanged.

Examples:

• If n = 3, then $x_1^2 x_2^2 x_3^2$ is a symmetric polynomial, because

$$x_1^2 x_2^2 x_3^2 = x_1^2 x_3^2 x_2^2 = x_2^2 x_1^2 x_3^2 = x_2^2 x_3^2 x_1^2 = x_3^2 x_2^2 x_1^2 = x_3^2 x_1^2 x_2^2$$

Symmetric Polynomials

Definition.

Fix a positive integer n. A **symmetric polynomial** is a polynomial in the n variables x_1, x_2, \ldots, x_n such that any permutation (or switching) of the variables leaves the polynomial unchanged.

- If n = 3, then $x_1^2 x_2^2 x_3^2$ is a symmetric polynomial, because $x_1^2 x_2^2 x_3^2 = x_1^2 x_3^2 x_2^2 = x_2^2 x_1^2 x_3^2 = x_2^2 x_3^2 x_1^2 = x_3^2 x_2^2 x_1^2 = x_3^2 x_1^2 x_2^2$
- ② If n=3, then $x_1^2x_2x_3$ is **not** a symmetric polynomial, because $x_1^2x_2x_3\neq x_2^2x_1x_3\neq x_3^2x_1x_2.$

Definition.

The **power sum symmetric polynomial** of degree k in n variables, denoted by p_k , is the polynomial resulting from adding all terms x_i^k where $1 \le i \le n$. Hence

Definition.

The **power sum symmetric polynomial** of degree k in n variables, denoted by p_k , is the polynomial resulting from adding all terms x_i^k where $1 \le i \le n$. Hence

$$p_k = \sum_{i=1}^n x_i^k = x_1^k + x_2^k + \dots + x_n^k$$

Definition.

The **power sum symmetric polynomial** of degree k in n variables, denoted by p_k , is the polynomial resulting from adding all terms x_i^k where $1 \le i \le n$. Hence

$$p_k = \sum_{i=1}^n x_i^k = x_1^k + x_2^k + \dots + x_n^k$$

1 If
$$n = 3$$
, then $p_3 = x_1^3 + x_2^3 + x_3^3$

Definition.

The **power sum symmetric polynomial** of degree k in n variables, denoted by p_k , is the polynomial resulting from adding all terms x_i^k where $1 \le i \le n$. Hence

$$p_k = \sum_{i=1}^n x_i^k = x_1^k + x_2^k + \dots + x_n^k$$

- **1** If n = 3, then $p_3 = x_1^3 + x_2^3 + x_3^3$
- ② If n = 5, then $p_6 = x_1^6 + x_2^6 + x_3^6 + x_4^6 + x_5^6$

Definition.

Given a positive integer $k \le n$, the elementary symmetric polynomial of degree k, denoted e_k , is

Definition.

Given a positive integer $k \le n$, the elementary symmetric polynomial of degree k, denoted e_k , is

$$e_k = \sum_{1 \leq i_1 < i_2 < \dots < i_k \leq n} x_{i_1} x_{i_2} \cdots x_{i_k}$$

Definition.

Given a positive integer $k \le n$, the elementary symmetric polynomial of degree k, denoted e_k , is

$$e_k = \sum_{1 \leq i_1 < i_2 < \dots < i_k \leq n} x_{i_1} x_{i_2} \cdots x_{i_k}$$

1 If
$$n = 3$$
, $k = 2$: $e_2 = x_1x_2 + x_1x_3 + x_2x_3$

Definition.

Given a positive integer $k \le n$, the **elementary symmetric** polynomial of degree k, denoted e_k , is

$$e_k = \sum_{1 \leq i_1 < i_2 < \dots < i_k \leq n} x_{i_1} x_{i_2} \cdots x_{i_k}$$

- **1** If n = 3, k = 2: $e_2 = x_1x_2 + x_1x_3 + x_2x_3$
- ② If n = 4, k = 3: $e_3 = x_1x_2x_3 + x_1x_3x_4 + x_1x_2x_4 + x_2x_3x_4$

Definition.

Given a positive integer $k \le n$, the **elementary symmetric** polynomial of degree k, denoted e_k , is

$$e_k = \sum_{1 \leq i_1 < i_2 < \dots < i_k \leq n} x_{i_1} x_{i_2} \cdots x_{i_k}$$

- **1** If n = 3, k = 2: $e_2 = x_1x_2 + x_1x_3 + x_2x_3$
- ② If n = 4, k = 3: $e_3 = x_1x_2x_3 + x_1x_3x_4 + x_1x_2x_4 + x_2x_3x_4$

Definition.

Given a positive integer $k \le n$, the elementary symmetric polynomial of degree k, denoted e_k , is

$$e_k = \sum_{1 \leq i_1 < i_2 < \dots < i_k \leq n} x_{i_1} x_{i_2} \cdots x_{i_k}$$

Examples:

- If n = 3, k = 2: $e_2 = x_1x_2 + x_1x_3 + x_2x_3$
- ② If n = 4, k = 3: $e_3 = x_1x_2x_3 + x_1x_3x_4 + x_1x_2x_4 + x_2x_3x_4$
- **3** If n = 5, k = 5: $e_5 = x_1x_2x_3x_4x_5$

Note: e_k is only defined for $k \le n$

Theorem 1 (Newton-Girard).

Given a positive integer $k \le n$, the following identity holds:

Theorem 1 (Newton-Girard).

Given a positive integer $k \le n$, the following identity holds:

$$ke_k = \sum_{j=1}^k (-1)^{j-1} p_j e_{k-j} = p_1 e_{k-1} - p_2 e_{k-2} + \dots + (-1)^{k-1} p_k$$

Theorem 1 (Newton-Girard).

Given a positive integer $k \le n$, the following identity holds:

$$ke_k = \sum_{j=1}^k (-1)^{j-1} p_j e_{k-j} = p_1 e_{k-1} - p_2 e_{k-2} + \dots + (-1)^{k-1} p_k$$

Working out both sides of the Newton-Girard Formula in the case k=2 and n=3. In this case, the left-hand side is

Theorem 1 (Newton-Girard).

Given a positive integer $k \le n$, the following identity holds:

$$ke_k = \sum_{j=1}^k (-1)^{j-1} p_j e_{k-j} = p_1 e_{k-1} - p_2 e_{k-2} + \dots + (-1)^{k-1} p_k$$

Working out both sides of the Newton-Girard Formula in the case k=2 and n=3. In this case, the left-hand side is

$$2e_2 = 2(x_1x_2 + x_1x_3 + x_2x_3)$$

$$LHS = 2e_2 = 2(x_1x_2 + x_1x_3 + x_2x_3)$$

$$LHS = 2e_2 = 2(x_1x_2 + x_1x_3 + x_2x_3)$$

Recall k = 2, n = 3:

$$LHS = 2e_2 = 2(x_1x_2 + x_1x_3 + x_2x_3)$$

Recall k = 2, n = 3:

$$\sum_{j=1}^{2} (-1)^{j-1} p_j e_{2-j} = p_1 e_{2-1} - p_2 e_{2-2}$$

$$LHS = 2e_2 = 2(x_1x_2 + x_1x_3 + x_2x_3)$$

Recall k = 2, n = 3:

$$\sum_{j=1}^{2} (-1)^{j-1} p_j e_{2-j} = p_1 e_{2-1} - p_2 e_{2-2}$$
$$= p_1 e_1 - p_2$$

$$LHS = 2e_2 = 2(x_1x_2 + x_1x_3 + x_2x_3)$$

Recall k = 2, n = 3:

$$\sum_{j=1}^{2} (-1)^{j-1} p_j e_{2-j} = p_1 e_{2-1} - p_2 e_{2-2}$$

$$= p_1 e_1 - p_2$$

$$= (x_1 + x_2 + x_3)(x_1 + x_2 + x_3) - (x_1^2 + x_2^2 + x_3^2)$$

$$LHS = 2e_2 = 2(x_1x_2 + x_1x_3 + x_2x_3)$$

Recall k = 2, n = 3:

$$\sum_{j=1}^{2} (-1)^{j-1} p_j e_{2-j} = p_1 e_{2-1} - p_2 e_{2-2}$$

$$= p_1 e_1 - p_2$$

$$= (x_1 + x_2 + x_3)(x_1 + x_2 + x_3) - (x_1^2 + x_2^2 + x_3^2)$$

$$= x_1^2 + x_1 x_2 + x_1 x_3 + x_1 x_2 + x_2^2 + x_2 x_3$$

$$+ x_1 x_3 + x_2 x_3 + x_3^2 - x_1^2 - x_2^2 - x_3^2$$

$$LHS = 2e_2 = 2(x_1x_2 + x_1x_3 + x_2x_3)$$

Recall k = 2, n = 3:

$$\sum_{j=1}^{2} (-1)^{j-1} p_j e_{2-j} = p_1 e_{2-1} - p_2 e_{2-2}$$

$$= p_1 e_1 - p_2$$

$$= (x_1 + x_2 + x_3)(x_1 + x_2 + x_3) - (x_1^2 + x_2^2 + x_3^2)$$

$$= x_1^2 + x_1 x_2 + x_1 x_3 + x_1 x_2 + x_2^2 + x_2 x_3$$

$$+ x_1 x_3 + x_2 x_3 + x_3^2 - x_1^2 - x_2^2 - x_3^2$$

$$= 2x_1 x_2 + 2x_1 x_3 + 2x_2 x_3$$

$$LHS = 2e_2 = 2(x_1x_2 + x_1x_3 + x_2x_3)$$

Recall k = 2, n = 3:

$$\sum_{j=1}^{2} (-1)^{j-1} p_{j} e_{2-j} = p_{1} e_{2-1} - p_{2} e_{2-2}$$

$$= p_{1} e_{1} - p_{2}$$

$$= (x_{1} + x_{2} + x_{3})(x_{1} + x_{2} + x_{3}) - (x_{1}^{2} + x_{2}^{2} + x_{3}^{2})$$

$$= x_{1}^{2} + x_{1} x_{2} + x_{1} x_{3} + x_{1} x_{2} + x_{2}^{2} + x_{2} x_{3}$$

$$+ x_{1} x_{3} + x_{2} x_{3} + x_{3}^{2} - x_{1}^{2} - x_{2}^{2} - x_{3}^{2}$$

$$= 2x_{1} x_{2} + 2x_{1} x_{3} + 2x_{2} x_{3}$$

$$\therefore LHS = RHS$$

Definition.

A **partition** of a non-negative integer m is a sequence of non-negative integers in non-increasing order that sum to m, which contains only finitely many zero terms.

Here are some partitions of 2:

Definition.

Given a partition λ we define the **length**, $\ell(\lambda)$ to be the number of parts of λ . We use powers to count the multiplicity of elements in a partition so that $(1^2)=(1,1)$.

Definition.

Given a partition λ we define the **length**, $\ell(\lambda)$ to be the number of parts of λ . We use powers to count the multiplicity of elements in a partition so that $(1^2)=(1,1)$.

Definition.

Given a partition λ we define the **length**, $\ell(\lambda)$ to be the number of parts of λ . We use powers to count the multiplicity of elements in a partition so that $(1^2) = (1,1)$.

②
$$\ell(5^2, 4, 2^4, 1, 0^2) = \ell(5, 5, 4, 2, 2, 2, 2, 1, 0, 0) = 8$$

Definition.

Let λ be a partition with $\ell(\lambda) \leq n$. Adding zeros if $\ell(\lambda) < n$, write $\lambda = (b_1, \ldots, b_n)$. Then define the **monomial symmetric polynomial** given by λ in n variables by

$$m_{\lambda}=\sum x_1^{c_1}x_2^{c_2}\cdots x_n^{c_n}.$$

Where the sum is over all distinct permutations (c_1, \ldots, c_n) of (b_1, \ldots, b_n) . If $\ell(\lambda) > n$ we define $m_{\lambda} := 0$.

Definition.

Let λ be a partition with $\ell(\lambda) \leq n$. Adding zeros if $\ell(\lambda) < n$, write $\lambda = (b_1, \ldots, b_n)$. Then define the **monomial symmetric polynomial** given by λ in n variables by

$$m_{\lambda} = \sum x_1^{c_1} x_2^{c_2} \cdots x_n^{c_n}.$$

Where the sum is over all distinct permutations (c_1, \ldots, c_n) of (b_1, \ldots, b_n) . If $\ell(\lambda) > n$ we define $m_{\lambda} := 0$.

Definition.

Let λ be a partition with $\ell(\lambda) \leq n$. Adding zeros if $\ell(\lambda) < n$, write $\lambda = (b_1, \ldots, b_n)$. Then define the **monomial symmetric polynomial** given by λ in n variables by

$$m_{\lambda} = \sum x_1^{c_1} x_2^{c_2} \cdots x_n^{c_n}.$$

Where the sum is over all distinct permutations (c_1, \ldots, c_n) of (b_1, \ldots, b_n) . If $\ell(\lambda) > n$ we define $m_{\lambda} := 0$.

Definition.

Let λ be a partition with $\ell(\lambda) \leq n$. Adding zeros if $\ell(\lambda) < n$, write $\lambda = (b_1, \dots, b_n)$. Then define the **monomial symmetric polynomial** given by λ in n variables by

$$m_{\lambda} = \sum x_1^{c_1} x_2^{c_2} \cdots x_n^{c_n}.$$

Where the sum is over all distinct permutations (c_1, \ldots, c_n) of (b_1, \ldots, b_n) . If $\ell(\lambda) > n$ we define $m_{\lambda} := 0$.

Definition.

Let λ be a partition with $\ell(\lambda) \leq n$. Adding zeros if $\ell(\lambda) < n$, write $\lambda = (b_1, \ldots, b_n)$. Then define the **monomial symmetric polynomial** given by λ in n variables by

$$m_{\lambda} = \sum x_1^{c_1} x_2^{c_2} \cdots x_n^{c_n}.$$

Where the sum is over all distinct permutations (c_1, \ldots, c_n) of (b_1, \ldots, b_n) . If $\ell(\lambda) > n$ we define $m_{\lambda} := 0$.

$$m_{(2^2,1^2)}=0$$

Note:

$$m_{(1)} = x_1 + x_2 + x_3 = p_1$$

 $m_{(1^2)} = x_1 x_2 + x_1 x_3 + x_2 x_3 = e_2$

Note:

$$m_{(1)} = x_1 + x_2 + x_3 = p_1$$

 $m_{(1^2)} = x_1x_2 + x_1x_3 + x_2x_3 = e_2$

$$m_{(k)} = p_k$$
$$m_{(1^k)} = e_k$$

Monomial Symmetric Polynomials

Note:

$$m_{(1)} = x_1 + x_2 + x_3 = p_1$$

 $m_{(1^2)} = x_1 x_2 + x_1 x_3 + x_2 x_3 = e_2$

$$m_{(k)} = p_k$$

$$m_{(1^k)} = e_k$$

Thus:

Monomial symmetric polynomials are generalizations of the power sum and elementary symmetric polynomials.

Lemma 1: (Mead)

Let k be a positive integer with $k \le n$. Then for all $i \in \{2, 3, ..., k-1\}$,

$$p_i e_{k-i} = m_{(i+1,1^{k-i-1})} + m_{(i,1^{k-i})}$$

And

$$p_1e_{k-1}=m_{(2,1^{k-2})}+ke_k$$

Lemma 1: (Mead)

Let k be a positive integer with $k \le n$. Then for all $i \in \{2, 3, ..., k - 1\}$,

$$p_i e_{k-i} = m_{(i+1,1^{k-i-1})} + m_{(i,1^{k-i})}$$

And

$$p_1e_{k-1} = m_{(2,1^{k-2})} + ke_k$$

Let
$$k = 3$$
, $n = 3$, and $i = 2$, then
$$LHS = p_2 e_{3-2}$$

$$= p_2 e_1$$

$$= (x_1^2 + x_2^2 + x_3^2)(x_1 + x_2 + x_3)$$

$$= x_1^3 + x_1^2 x_2 + x_1^2 x_3 + x_2^2 x_1 + x_2^3 + x_2^2 x_3$$

 $+x_2^2x_1+x_2^2x_2+x_2^3$

$$\textit{LHS} = \textit{x}_{1}^{3} + \textit{x}_{1}^{2}\textit{x}_{2} + \textit{x}_{1}^{2}\textit{x}_{3} + \textit{x}_{2}^{2}\textit{x}_{1} + \textit{x}_{2}^{3} + \textit{x}_{2}^{2}\textit{x}_{3} + \textit{x}_{3}^{2}\textit{x}_{1} + \textit{x}_{3}^{2}\textit{x}_{2} + \textit{x}_{3}^{3}$$

$$\textit{LHS} = x_1^3 + x_1^2 x_2 + x_1^2 x_3 + x_2^2 x_1 + x_2^3 + x_2^2 x_3 + x_3^2 x_1 + x_3^2 x_2 + x_3^3$$

RHS =
$$m_{(2+1,1^{3-2-1})} + m_{(2,1^{3-2})}$$

= $m_{(3)} + m_{(2,1)}$
= $x_1^3 + x_2^3 + x_3^3 + x_1^2 x_2 + x_1^2 x_3 + x_2^2 x_1 + x_2^2 x_3 + x_3^2 x_1 + x_3^2 x_2$

$$\textit{LHS} = x_1^3 + x_1^2 x_2 + x_1^2 x_3 + x_2^2 x_1 + x_2^3 + x_2^2 x_3 + x_3^2 x_1 + x_3^2 x_2 + x_3^3$$

RHS =
$$m_{(2+1,1^{3-2-1})} + m_{(2,1^{3-2})}$$

= $m_{(3)} + m_{(2,1)}$
= $x_1^3 + x_2^3 + x_3^3 + x_1^2 x_2 + x_1^2 x_3 + x_2^2 x_1 + x_2^2 x_3 + x_3^2 x_1 + x_3^2 x_2$

$$\therefore$$
 LHS = RHS

Newton-Girard Formula

Given a positive integer $k \le n$, the following identity holds:

$$ke_k = \sum_{j=1}^k (-1)^{j-1} p_j e_{k-j}$$

From Lemma 1:

$$p_i e_{k-i} = m_{(i+1,1^{k-i-1})} + m_{(i,1^{k-i})}$$

Notice

In a non-commutative setting:

- $x_1 x_2 \neq x_2 x_1$
- $2 x_1^3 x_2 \neq x_1 x_2 x_1^2$

Notice

In a non-commutative setting:

- $x_1 x_2 \neq x_2 x_1$
- $2 x_1^3 x_2 \neq x_1 x_2 x_1^2$

 p_k will be the same as before. We will have to redefine e_k in a non-commutative setting.

Non-Commutative Setting

Notice

In a non-commutative setting:

- $x_1x_2 \neq x_2x_1$
- $x_1^3 x_2 \neq x_1 x_2 x_1^2$

 p_k will be the same as before. We will have to redefine e_k in a non-commutative setting.

Definition.

The symmetric group S_n is the set of all bijective functions from the set $\{1, 2, ..., n\}$ to itself. An element of S_n is called a **permutation**.

Non-Commutative Setting

Notice

In a non-commutative setting:

- $x_1x_2 \neq x_2x_1$
- $x_1^3 x_2 \neq x_1 x_2 x_1^2$

 p_k will be the same as before. We will have to redefine e_k in a non-commutative setting.

Definition.

The symmetric group S_n is the set of all bijective functions from the set $\{1, 2, ..., n\}$ to itself. An element of S_n is called a **permutation**.

We will use **cycle notation** to denote permutations.

$$S_3 = \{(1), (12), (13), (23), (123), (132)\}$$

$$S_3 = \{(1), (12), (13), (23), (123), (132)\}$$

The permutation $(123) \in S_3$ in cycle notation corresponds to the bijective function $f: \{1,2,3\} \to \{1,2,3\}$ defined by f(1) = 2, f(2) = 3 and f(3) = 1.

$$S_3 = \{(1), (12), (13), (23), (123), (132)\}$$

The permutation $(123) \in S_3$ in cycle notation corresponds to the bijective function $f: \{1,2,3\} \to \{1,2,3\}$ defined by f(1) = 2, f(2) = 3 and f(3) = 1.

We denote the identity permutation (the one that changes nothing) by (1). Also, any number that is not present in a cycle is fixed. So $(12) \in S_3$ fixes 3.

$$S_3 = \{(1), (12), (13), (23), (123), (132)\}$$

The permutation $(123) \in S_3$ in cycle notation corresponds to the bijective function $f: \{1,2,3\} \to \{1,2,3\}$ defined by f(1) = 2, f(2) = 3 and f(3) = 1.

We denote the identity permutation (the one that changes nothing) by (1). Also, any number that is not present in a cycle is fixed. So $(12) \in S_3$ fixes 3.

The inverse of (12) is denoted by $(12)^{-1} = (21) = (12)$ The inverse of (123) is denoted by $(123)^{-1} = (321) = (132)$

Definition.

The non-commutative elementary polynomial of degree $k \le n$ is

$$E_k := \sum_{\sigma \in S_n} x_{\sigma(1)} x_{\sigma(2)} \cdots x_{\sigma(k)}$$

Definition.

The non-commutative elementary polynomial of degree $k \le n$ is

$$E_k := \sum_{\sigma \in S_n} x_{\sigma(1)} x_{\sigma(2)} \cdots x_{\sigma(k)}$$

$$S_3 = \{(1), (12), (13), (23), (123), (132)\}$$

Definition.

The non-commutative elementary polynomial of degree $k \le n$ is

$$E_k := \sum_{\sigma \in S_n} x_{\sigma(1)} x_{\sigma(2)} \cdots x_{\sigma(k)}$$

$$S_3 = \{(1), (12), (13), (23), (123), (132)\}$$

Thus for n = 3:

$$E_2 = \sum_{\sigma \in S_3} x_{\sigma(1)} x_{\sigma(2)}$$

Definition.

The non-commutative elementary polynomial of degree $k \le n$ is

$$E_k := \sum_{\sigma \in S_n} x_{\sigma(1)} x_{\sigma(2)} \cdots x_{\sigma(k)}$$

$$S_3 = \{(1), (12), (13), (23), (123), (132)\}$$

Thus for n = 3:

$$E_2 = \sum_{\sigma \in S_3} x_{\sigma(1)} x_{\sigma(2)}$$

$$E_2 = x_1x_2 + x_2x_1 + x_3x_2 + x_1x_3 + x_2x_3 + x_3x_2$$

Definition.

Given $k \leq n$ and $i \in \{0, 1, ..., k\}$, we define Sh_i the set of all **shuffles** to be the set of all $\sigma \in S_k$ with the property that σ^{-1} preserves the orders both of 1, 2, ..., k - i and of k - i + 1, k - i + 2, ..., k.

Definition.

Given $k \leq n$ and $i \in \{0, 1, ..., k\}$, we define Sh_i the set of all **shuffles** to be the set of all $\sigma \in S_k$ with the property that σ^{-1} preserves the orders both of 1, 2, ..., k - i and of k - i + 1, k - i + 2, ..., k.

$$S_3 = \{(1), (12), (13), (23), (123), (132)\}$$

Definition.

Given $k \leq n$ and $i \in \{0, 1, ..., k\}$, we define Sh_i the set of all **shuffles** to be the set of all $\sigma \in S_k$ with the property that σ^{-1} preserves the orders both of 1, 2, ..., k - i and of k - i + 1, k - i + 2, ..., k.

If k = 3 we find all elements of Sh_1 .

$$S_3 = \{(1), (12), (13), (23), (123), (132)\}$$

① (1) preserves the order of everything. So $(1) \in Sh_1$.

Definition.

Given $k \leq n$ and $i \in \{0, 1, ..., k\}$, we define Sh_i the set of all **shuffles** to be the set of all $\sigma \in S_k$ with the property that σ^{-1} preserves the orders both of 1, 2, ..., k - i and of k - i + 1, k - i + 2, ..., k.

$$S_3 = \{(1), (12), (13), (23), (123), (132)\}$$

- **1** (1) preserves the order of everything. So $(1) \in Sh_1$.
- ② $(12)^{-1} = (12)$ changes the order of 1 and 2. So $(12) \notin Sh_1$.

Definition.

Given $k \leq n$ and $i \in \{0, 1, ..., k\}$, we define Sh_i the set of all **shuffles** to be the set of all $\sigma \in S_k$ with the property that σ^{-1} preserves the orders both of 1, 2, ..., k - i and of k - i + 1, k - i + 2, ..., k.

$$S_3 = \{(1), (12), (13), (23), (123), (132)\}$$

- **1** (1) preserves the order of everything. So $(1) \in Sh_1$.
- ② $(12)^{-1} = (12)$ changes the order of 1 and 2. So $(12) \notin Sh_1$.
- **3** $(23)^{-1} = (23)$ fixes 1 and sends 2 to 3. Thus $(23) \in Sh_1$.

Definition.

Given $k \leq n$ and $i \in \{0, 1, ..., k\}$, we define Sh_i the set of all **shuffles** to be the set of all $\sigma \in S_k$ with the property that σ^{-1} preserves the orders both of 1, 2, ..., k - i and of k - i + 1, k - i + 2, ..., k.

$$S_3 = \{(1), (12), (13), (23), (123), (132)\}$$

- **1** (1) preserves the order of everything. So $(1) \in Sh_1$.
- ② $(12)^{-1} = (12)$ changes the order of 1 and 2. So $(12) \notin Sh_1$.
- **3** $(23)^{-1} = (23)$ fixes 1 and sends 2 to 3. Thus $(23) \in Sh_1$.
- **1** (13)⁻¹ = (13) takes 1 to 3 and fixes 2. Thus (13) $\notin Sh_1$.

Definition.

Given $k \leq n$ and $i \in \{0, 1, ..., k\}$, we define Sh_i the set of all **shuffles** to be the set of all $\sigma \in S_k$ with the property that σ^{-1} preserves the orders both of 1, 2, ..., k - i and of k - i + 1, k - i + 2, ..., k.

$$S_3 = \{(1), (12), (13), (23), (123), (132)\}$$

- **1** (1) preserves the order of everything. So $(1) \in Sh_1$.
- ② $(12)^{-1} = (12)$ changes the order of 1 and 2. So $(12) \notin Sh_1$.
- **3** $(23)^{-1} = (23)$ fixes 1 and sends 2 to 3. Thus $(23) \in Sh_1$.
- **1** $(13)^{-1} = (13)$ takes 1 to 3 and fixes 2. Thus $(13) \notin Sh_1$.
- **1** $(123)^{-1} = (132)$ sends 1 to 3 and 2 to 1. Thus $(123) \notin Sh_1$.

Definition.

Given $k \leq n$ and $i \in \{0, 1, ..., k\}$, we define Sh_i the set of all **shuffles** to be the set of all $\sigma \in S_k$ with the property that σ^{-1} preserves the orders both of 1, 2, ..., k - i and of k - i + 1, k - i + 2, ..., k.

$$S_3 = \{(1), (12), (13), (23), (123), (132)\}$$

- **1** (1) preserves the order of everything. So $(1) \in Sh_1$.
- ② $(12)^{-1} = (12)$ changes the order of 1 and 2. So $(12) \notin Sh_1$.
- **3** $(23)^{-1} = (23)$ fixes 1 and sends 2 to 3. Thus $(23) \in Sh_1$.
- **1** $(13)^{-1} = (13)$ takes 1 to 3 and fixes 2. Thus $(13) \notin Sh_1$.
- **1** $(123)^{-1} = (132)$ sends 1 to 3 and 2 to 1. Thus $(123) \notin Sh_1$.
- $(132)^{-1} = (123)$ sends 1 to 2 and 2 to 3. Thus $(132) \in Sh_1.$

Definition.

Given $k \leq n$ and $i \in \{0, 1, ..., k\}$, we define Sh_i the set of all **shuffles** to be the set of all $\sigma \in S_k$ with the property that σ^{-1} preserves the orders both of 1, 2, ..., k - i and of k - i + 1, k - i + 2, ..., k.

$$S_3 = \{(1), (12), (13), (23), (123), (132)\}$$

- **1** (1) preserves the order of everything. So $(1) \in Sh_1$.
- ② $(12)^{-1} = (12)$ changes the order of 1 and 2. So $(12) \notin Sh_1$.
- **3** $(23)^{-1} = (23)$ fixes 1 and sends 2 to 3. Thus $(23) \in Sh_1$.
- **1** $(13)^{-1} = (13)$ takes 1 to 3 and fixes 2. Thus $(13) \notin Sh_1$.
- **1** $(123)^{-1} = (132)$ sends 1 to 3 and 2 to 1. Thus $(123) \notin Sh_1$.
- **10** (132)⁻¹ = (123) sends 1 to 2 and 2 to 3. Thus (132) ∈ Sh_1 . ∴ $Sh_1 = \{(1), (23), (132)\}.$

Definition.

We define the action of the symmetric group S_k on the right on a symmetric polynomial of degree k by the rule

$$(x_{i_1}x_{i_2}\cdots x_{i_k})\circ\sigma:=x_{i_{\sigma^{-1}(1)}}x_{i_{\sigma^{-1}(2)}}\cdots x_{i_{\sigma^{-1}(k)}}$$

Definition.

We define the action of the symmetric group S_k on the right on a symmetric polynomial of degree k by the rule

$$(x_{i_1}x_{i_2}\cdots x_{i_k})\circ\sigma:=x_{i_{\sigma^{-1}(1)}}x_{i_{\sigma^{-1}(2)}}\cdots x_{i_{\sigma^{-1}(k)}}$$

Example:

$$(12)^{-1} = (12)$$
. So, if $k = 2$ and $n = 3$, then

$$E_{2} \circ (12) = (x_{1}x_{2} + x_{1}x_{3} + x_{2}x_{1} + x_{2}x_{3} + x_{3}x_{1} + x_{3}x_{2}) \circ (12)$$

$$= (x_{1}x_{2}) \circ (12) + (x_{1}x_{3}) \circ (12) + (x_{2}x_{1}) \circ (12)$$

$$+ (x_{2}x_{3}) \circ (12) + (x_{3}x_{1}) \circ (12) + (x_{3}x_{2}) \circ (12)$$

$$= x_{2}x_{1} + x_{3}x_{1} + x_{1}x_{2} + x_{3}x_{2} + x_{1}x_{3} + x_{2}x_{3}$$

BDDK Theorem

(Boumova, Drensky, Dzhundrekov, Kassabov 2022)

If k < n, then

$$kE_k = (-1)^{k+1}k!p_k + \sum_{i=1}^{k-1}(-1)^{i+1}i!\left(E_{k-i}p_i \circ \sum_{\sigma \in Sh_i}\sigma\right)$$

Lemma.

For k < n. When i > 1:

$$E_{k-i}p_{i} \circ \sum_{\sigma \in Sh_{i}} \sigma = (i+1) \left(M_{(i+1,1^{k-i-1})} \circ \sum_{\sigma \in Sh_{k-i-1}} \sigma \right) + M_{(i,1^{k-i})} \circ \sum_{\sigma \in Sh_{k-i}} \sigma$$

When i = 1:

$$E_{k-1}p_1 \circ \sum_{\sigma \in Sh_1} \sigma = 2 \left(M_{(2,1^{k-2})} \circ \sum_{\sigma \in Sh_{k-2}} \sigma \right) + kM_{(1^k)}$$

There is a second Newton-Girard Formula for the case when k > n as well as a second BDDK Formula for this case.

There is a second Newton-Girard Formula for the case when k > n as well as a second BDDK Formula for this case.

In the commutative setting, Mead proved the k > n case with a similar technique as the $k \le n$ case.

There is a second Newton-Girard Formula for the case when k > n as well as a second BDDK Formula for this case.

In the commutative setting, Mead proved the k > n case with a similar technique as the $k \le n$ case.

We are still working on developing a lemma for the k > n case of the non-commutative BDDK formula.

There is a second Newton-Girard Formula for the case when k > n as well as a second BDDK Formula for this case.

In the commutative setting, Mead proved the k > n case with a similar technique as the $k \le n$ case.

We are still working on developing a lemma for the k > n case of the non-commutative BDDK formula.

This has not been finalized yet and will require further work.