Sequences of Sum and Difference **Dominated Sets**

Yorick Herrmann¹, Connor Hill², Merlin Phillips³, Daniel Flores⁴, Steven J. Miller⁵, and Steven Senger⁶

November 2025

¹ yherrman@uci.edu, 2 hill.connor.03@gmail.com, 3 merlin.phillips216@gmail.com,

⁴flore205@purdue.edu, ⁵sjm1@williams.edu, ⁶stevensenger@missouristate.edu

Introduction

•00000

Let A be a set of integers.

Sumsets and Difference sets

Let A be a set of integers.

Sumset

We define the *sumset* $A+A := \{a+b \mid a,b \in A\}$, and denote its cardinality A+A.

Sumsets and Difference sets

Let A be a set of integers.

Sumset

We define the *sumset* $A + A := \{a + b \mid a, b \in A\}$, and denote its cardinality A + A.

Difference set

We define the *difference set* $A - A := \{a - b \mid a, b \in A\}$, and denote its cardinality A - A.

Sumsets and Difference sets

Let A be a set of integers.

Sumset

We define the sumset $A + A := \{a + b \mid a, b \in A\}$, and denote its cardinality A + A.

Difference set

We define the *difference set* $A-A := \{a-b \mid a,b \in A\}$, and denote its cardinality A-A.

We say A is sum-dominated or a **More Sums than Differences** (MSTD) set if A + A > A - A.

Introduction

000000

Let $A = \{0, 2, 3, 4, 7, 11, 12, 14\}.$

- \bullet $A + A = [0,28] \setminus \{1,20,27\}, A + A = 26$
- $A A = [-14, 14] \setminus \{\pm 6, \pm 13\}, \quad A A = 25$

Example: The Conway Set

Let
$$A = \{0, 2, 3, 4, 7, 11, 12, 14\}.$$

•
$$A + A = [0,28] \setminus \{1,20,27\}, A + A = 26$$

•
$$A - A = [-14, 14] \setminus \{\pm 6, \pm 13\}, \quad A - A = 25$$

This set *A* is called the **Conway set**, and it is the smallest MSTD set in terms of both cardinality and diameter.

Growth Rates

Known Results

Introduction

000000

• MSTDs should be rare since a + b = b + a, but $a - b \neq b - a$, for all $a, b \in \mathbb{Z}$ with $a \neq b$.

Introduction

- MSTDs should be rare since a + b = b + a, but $a b \neq b a$, for all $a, b \in \mathbb{Z}$ with $a \neq b$.
- If A is MSTD, then $x \cdot A + \{y\}$ is MSTD for any $x, y \in \mathbb{Z}$ with $x \neq 0$.

9

Known Results

- MSTDs should be rare since a + b = b + a, but $a b \neq b a$, for all $a, b \in \mathbb{Z}$ with $a \neq b$.
- If A is MSTD, then $x \cdot A + \{y\}$ is MSTD for any $x, y \in \mathbb{Z}$ with $x \neq 0$.
- If there exists an $a^* \in \mathbb{Z}$ such that $A = \{a^*\} A$, then A is symmetric with respect to a^* and A is sum-difference balanced (A + A = A A).

Known Results

- MSTDs should be rare since a + b = b + a, but $a b \neq b a$, for all $a, b \in \mathbb{Z}$ with $a \neq b$.
- If A is MSTD, then $x \cdot A + \{y\}$ is MSTD for any $x, y \in \mathbb{Z}$ with $x \neq 0$.
- If there exists an $a^* \in \mathbb{Z}$ such that $A = \{a^*\} A$, then A is symmetric with respect to a^* and A is sum-difference balanced (A + A = A A).
- Several methods for constructing MSTD sets exist.

Nathanson's Construction

Nathanson provides one such construction for MSTD sets.

Theorem (Nathanson, 2006)

Let m, d, k be integers such that $m \ge 4$, $1 \le d \le m-1$, $d \ne \frac{m}{2}$, and

$$k \geq 3 \text{ if } d < \frac{m}{2}, \quad k \geq 4 \text{ if } d > \frac{m}{2}.$$

Define

$$B = [0, m-1] \setminus \{d\},$$

$$L = \{m-d, 2m-d, ..., km-d\},$$

$$a^* = (k+1)m-2d,$$

$$A^* = B \cup L \cup (a^*-B),$$

$$A = A^* \cup \{m\}.$$

Then A is an MSTD set of integers.

Example

Let m = 4, d = 1, and k = 3. Then:

- $B = [0, m-1] \setminus \{d\} = \{0, 2, 3\}$
- $L = \{m-d, 2m-d, 3m-d\} = \{3,7,11\}$
- $a^* = (k+1)m-2d = 14$
- \bullet $A^* = B \cup L \cup (a^* B) = \{0, 2, 3, 7, 11, 12, 14\}$
- $\bullet A = A^* \cup \{m\} = \{0, 2, 3, 4, 7, 11, 12, 14\}$

This is the Conway set!

Introduction

At the recent CANT (Combinatorial and Additive Number Theory Conference), Samuel Alexander posed the following: Find a sequence of sets with $A_{i-1} \subset A_i$ that alternate being sum and difference dominated.

Filling In

Introduction

 For a set A ⊂ [a, b], filling in A refers to the process of adding elements in [a, b] \ A to A. Introduction

• For a set $A \subset [a, b]$, filling in A refers to the process of adding elements in $[a, b] \setminus A$ to A.

 We arrive at trivial methods of obtaining the desired sequences by noticing that an interval of integers [a, b] is symmetric with respect to a + b.

Filling In

- For a set $A \subset [a, b]$, filling in A refers to the process of adding elements in $[a, b] \setminus A$ to A.
- We arrive at trivial methods of obtaining the desired sequences by noticing that an interval of integers [a, b] is symmetric with respect to a + b.
- Thus, between each step in the sequence we fill in the sets to 'reset' our sum and difference counts.

Filling Method 1

Lemma

Let [a,b] be an interval of integers where $a,b\in\mathbb{Z}$, and a< b. Let p>b+1, $p\in\mathbb{Z}$. Then

$$A := [a, b] \cup \{p\}$$

is difference-dominated.

Filling Method 1

Introduction

Lemma

Let [a, b] be an interval of integers where $a, b \in \mathbb{Z}$, and a < b. Let p > b + 1, $p \in \mathbb{Z}$. Then

$$A := [a, b] \cup \{p\}$$

is difference-dominated.

Consider any MSTD set A_1 , where $A_1 \subset [0, n]$, $n \in \mathbb{N}$. From the lemma, $A_2 := [0, n] \cup \{p\}$ is difference dominated and contains A_1 if p > n + 1.

Next, we obtain an MSTD set A_3 from A_2 :

- Let m = p + 2 if p is odd, m = p + 5 if p is even
- Set 2 < d < m − 3</p>
- Set $k \ge 2$, and $a^* = (k+3)m 2d$.

Filling Method 1

Introduction

Next, we obtain an MSTD set A_3 from A_2 :

- Let m = p + 2 if p is odd, m = p + 5 if p is even
- Set 2 < d < m − 3
- Set k > 2, and $a^* = (k+3)m 2d$.

We apply Nathanson's Construction for MSTD sets:

- $B = [0, m-1] \setminus \{d\}.$
- $A_3^* = B \cup \{2m d, 3m d, ..., (k+1)m d\} \cup (a^* B)$.
- $A_3 = A_3^* \cup \{m\}.$

Filling Method 1

Next, we obtain an MSTD set A_3 from A_2 :

- Let m = p + 2 if p is odd, m = p + 5 if p is even
- Set $2 \le d \le m 3$
- Set $k \ge 2$, and $a^* = (k+3)m 2d$.

We apply Nathanson's Construction for MSTD sets:

- $B = [0, m-1] \setminus \{d\}.$
- $A_3^* = B \cup \{2m-d, 3m-d, \ldots, (k+1)m-d\} \cup (a^*-B).$
- $A_3 = A_3^* \cup \{m\}.$

Thus, A_3 is MSTD. We have $A_1 \subset A_2 \subset A_3$, and we can extend this sequence infinitely by setting $n = \max(A_3)$ and repeating the steps used to generate A_2 and A_3 .

Filling Method 1 Example

Introduction

- $A_1 = \{0, 2, 3, 4, 7, 11, 12, 14\}, p = 17$
- \bullet $A_2 = [0, 14] \cup \{17\}$
- $A_3 = [0, 18] \setminus \{16\} \cup \{22, 41\} \cup [45, 63] \setminus \{47\} \cup \{19\}$
- \bullet $A_4 = [0,63] \cup \{65\}$

Filling Method 1 Example Sequence

Table: Filling in Method 1 Example Sequence

Set	$A_i + A_i$	$A_i - A_i$	Cardinality	Diameter	Density
<i>A</i> ₁	26	25	8	14	0.571
A_2	33	35	16	17	0.941
A_3	126	125	39	63	0.619
A_4	130	131	65	65	1.000
A ₅	414	413	135	207	0.652
A 6	418	419	209	209	1.000
A ₇	1278	1277	423	639	0.662
i	:	:	:	i i	:

Limiting MSTD density: 0.667

References

Introduction

Growth Rates

Introduction

Since $x \cdot A + \{y\}$ is MSTD for any MSTD set A, we can translate any MSTD set to fit within [0, n] and use it to start this method.

Introduction

Filling Method 2

Definition (P_n Set)

A set of integers is called a P_n set if both its sumset and difference set contain all possible elements except for the first and last n.

Equivalently, for a set A with $a = \min A$ and $b = \max A$,

- [2a + n, 2b n] ⊂ A + A
- [-(b-a)+n,(b-a)+n] ⊂ A-A

For instance, if $A = \{0, 1\}$, then $A + A = \{0, 1, 2\}$ and $A - A = \{-1, 0, 1\}$. As such, A is both a P_0 and a P_1 set.

Filling Method 2

Theorem

Let $A_1 = L \cup R$ where $L \subset [1, n]$ and $R \subset [n + 1, 2n]$, with $1, 2n \in A_1$ and $n \notin A_1$. Suppose that A_1 is a P_n set and MSTD. For l > 1, define

$$A_{2l} = ([(1-l)n, (l+1)n] \setminus \{n\}) \cup \{(l+2)n\}$$

$$A_{2l+1} = (L-ln-1) \cup ([(1-l)n, (l+1)n] \setminus \{n\}) \cup (R+ln).$$

Then the sequence of sets $A_1 \subset A_2 \subset \cdots$ alternates between being MSTD and MDTS.

Filling Method 2 Example Sequence

- $A_1 = \{1, 3, 4, 8, 9, 12, 13, 15, 18, 19, 20\}$ is P_{10} and MSTD, and contains 1 and 20 but not 10
- $A_2 = [0,20] \setminus \{10\} \cup \{30\}$
- $A_3 = \{-10, -8, -7, -3, -2\} \cup [0, 20] \setminus \{10\} \cup$ {22, 23, 25, 28, 29, 30}

Introduction

Filling Method 2 Example Sequence

Table: Filling in Method 2 Example Sequence

Set	$A_i + A_i$	$A_i - A_i$	Cardinality	Diameter	Density
<i>A</i> ₁	38	37	11	16	0.688
<i>A</i> ₂	52	61	21	30	0.700
A ₃	80	79	31	40	0.775
A_4	92	101	41	50	0.820
A ₅	120	119	51	60	0.850
A ₆	132	141	61	70	0.871
A ₇	160	159	71	80	0.888
:	:	::	:	:	:

Limiting MSTD density: 1.000

References

Introduction

Non-Filling Method 1

Introduction

We now add the constraint that we are not allowed to fill in sets to obtain the desired sequence.

We now add the constraint that we are not allowed to fill in sets to obtain the desired sequence.

Theorem

Let A_1 be MSTD with $0 \in A_1$, and $n > \max(A_1)$ satisfying:

- $|(A_1 + A_1) \mod n| = |(A_1 A_1) \mod n|$
- $2y x 1 > |A_1 + A_1| |A_1 A_1|$ where:
 - $x = |a \in A_1 : n + a \notin A_1 + A_1|$
 - $y = |b \in A_1 : n b \notin A_1 A_1|$
- Then, $A_2 = A_1 \cup \{n\}$ is difference-dominated, $A_3 = A_1 + \{0, n\}$ is sum-dominated.

- We have $A_1 \subset A_2 \subset A_3$.
- For *l* > 2, let

$$A_{2l} = A_{2l-1} \cup \{ln\}$$

 $A_{2l+1} = A_{2l-1} \cup (A_1 + ln)$

Growth Rates

Non-filling Method 1

- We have $A_1 \subset A_2 \subset A_3$.
- For *l* > 2, let

$$A_{2l} = A_{2l-1} \cup \{ln\}$$

 $A_{2l+1} = A_{2l-1} \cup (A_1 + ln)$

- Clearly, $A_{2l} \subset A_{2l+1}$. We proved A_{2l} and A_{2l+1} continue to alternate being sum- and difference-dominated.
- Using these constructions, we are able to generate the desired infinite sequence.

Non-filling Method 1 Example

Introduction

$$A_1 = \{0, 2, 3, 4, 7, 11, 12, 14\}, n = 17.$$

- \bullet $A_2 = \{0, 2, 3, 4, 7, 11, 12, 14, 17\}$
- $A_3 = \{0, 2, 3, 4, 7, 11, 12, 14, 17, 19, 20, 21, 24, 28, 29, 31\}$
- $A_{2l+1} = 17 \cdot [0, l] + \{0, 2, 3, 4, 7, 11, 12, 14, 17\}$
- $\bullet A_{2l} = A_{2l-1} \cup \{ln\}$

Non-filling Method 1 Example

Introduction

Table: Non-Filling in Method 1 Example Sequence

Set	$A_i + A_i$	$A_i - A_i$	Cardinality	Diameter	Density
<i>A</i> ₁	26	25	8	14	0.571
A_2	30	33	9	17	0.529
A ₃	60	59	16	31	0.516
A_4	64	67	17	34	0.500
A ₅	94	93	24	48	0.500
A ₆	98	101	25	51	0.490
A ₇	128	127	32	65	0.492
:	:	:	:	:	:

Limiting MSTD density: 0.471 (8/17)

Non-Filling Method 2

Theorem

Introduction

Suppose there are sets L, $R \subset [0, n]$ such that

- 0,n ∈ L,R
- [0, n-1] ⊂ (L+L)
- $[0, n-1] \subset (R+R)$
- [0, n-1] ⊄ [R+L]

Theorem

Suppose there are sets L, $R \subset [0, n]$ such that

- 0,n ∈ L,R
- $[0, n-1] \subset (L+L)$
- $[0, n-1] \subset (R+R)$
- [0, n-1] ⊄ [R+L]

Then for sufficiently large $m \ge n$ and for all $k \ge 1$, set

$$A_{2k-1} = L \cup [n,m] \cup n \cdot [1,k] + (m-R).$$

Then A_{2k-1} is MSTD, and there may exist A_{2k} which is MDTS such that $A_{2k-1} \subset A_{2k} \subset A_{2k+1}$.

Introduction

• The sumset of $A_{2k-1} + A_{2k-1}$ is

$$[0,2m+n] \cup n \cdot [2,2k] + (m-R) + (m-R)$$

$$= [0,2m+n] \cup n \cdot [2,2k] + 2m - (R+R)$$

$$= [0,2m+n] \cup [2m+n+1,2m+2kn]$$

$$= [0,2m+2kn] = [0,2 \cdot \max A_{2k-1}]$$

• The sumset of $A_{2k-1} + A_{2k-1}$ is

$$[0,2m+n] \cup n \cdot [2,2k] + (m-R) + (m-R)$$

$$= [0,2m+n] \cup n \cdot [2,2k] + 2m - (R+R)$$

$$= [0,2m+n] \cup [2m+n+1,2m+2kn]$$

$$= [0,2m+2kn] = [0,2 \cdot \max A_{2k-1}]$$

 Since we have all possible sums, it suffices to have one element missing from $A_{2k-1} - A_{2k-1}$.

Introduction

- We know $A_{2k-1} A_{2k-1} \subset [-(m+nk), m+nk]$.
- Elements of $A_{2k-1} A_{2k-1}$ which are larger than m+(k-1)n+1 must belong to (nk + m - R) - L = nk + m - (R + L).
- Due to $[0, n-1] \not\subset [R+L]$, at least one such element is missing.

For $l \ge 1$, let

$$A_{2l-1} = \{0, 1, 2, 5, 8, 9, 10\} \cup (8 \cdot [1, l] + \{6, 7, 9, 10\}),$$

 $A_{2l} = A_{2l-1} \cup \{8l + 14\}$

This corresponds to n = 8, $L = \{0, 1, 2, 5, 8\}$, $R = \{0, 1, 3, 4, 8\}$, and m = 10.

For l > 1, let

Introduction

$$A_{2l-1} = \{0, 1, 2, 5, 8, 9, 10\} \cup (8 \cdot [1, l] + \{6, 7, 9, 10\}),$$

 $A_{2l} = A_{2l-1} \cup \{8l + 14\}$

This corresponds to n = 8, $L = \{0, 1, 2, 5, 8\}$, $R = \{0, 1, 3, 4, 8\}$, and m=10.

- \bullet $A_1 = \{0, 1, 2, 5, 8, 9, 10, 14, 15, 17, 18\}$
- \bullet $A_2 = \{0, 1, 2, 5, 8, 9, 10, 14, 15, 17, 18, 22\}$
- $A_3 = \{0, 1, 2, 5, 8, 9, 10, 14, 15, 17, 18, 22, 23, 25, 26\}$

Introduction

Table: Non-Filling in Method 2 Example Sequence

Set	$A_i + A_i$	$A_i - A_i$	Cardinality	Diameter	Density
<i>A</i> ₁	36	35	11	18	0.611
<i>A</i> ₂	40	41	12	22	0.545
<i>A</i> ₃	52	51	15	26	0.577
A_4	56	57	16	30	0.533
A ₅	68	67	19	34	0.559
A ₆	72	73	20	38	0.526
A ₇	84	83	23	42	0.548
:	:	:	:	:	:

Limiting MSTD density: 0.500

Theorem

Let A be an MSTD set built via Nathanson's construction, with the additional constraints that $m \equiv 0 \pmod 4$ and $d \in \left\{\frac{m}{4}, \frac{3m}{4}\right\}$. Then

$$A_1 = A \cup \{-d, (k+1)m - d\}$$

is MSTD. For $r \ge 1$, define

$$A_{2r} := A_{2r-1} \cup \{(k+r+1)m-d\},$$

$$A_{2r+1} := A_{2r-1} \cup \{-rm-d, (k+r+1)m-d\}.$$

Then A_{2r} is MDTS, A_{2r+1} is MSTD, and

$$A_1 \subset \cdots \subset A_{2r-1} \subset A_{2r} \subset A_{2r+1} \subset \cdots$$

forms the desired alternating sequence.

Introduction

• $A = \{0, 2, 3, 4, 7, 11, 12, 14\}$ can be expressed as $\{0,2,3\} \cup \{3,7,11\} \cup \{11,12,14\} \cup \{4\}.$

- $A = \{0, 2, 3, 4, 7, 11, 12, 14\}$ can be expressed as $\{0, 2, 3\} \cup \{3, 7, 11\} \cup \{11, 12, 14\} \cup \{4\}.$
- By extending the arithmetic progression {3,7,11}, we are able to generate the desired sequence.

- $A = \{0, 2, 3, 4, 7, 11, 12, 14\}$ can be expressed as $\{0, 2, 3\} \cup \{3, 7, 11\} \cup \{11, 12, 14\} \cup \{4\}.$
- By extending the arithmetic progression {3,7,11}, we are able to generate the desired sequence.
- $A_1 = A \cup \{-1, 15\}$ is MSTD. $A_2 = A_1 \cup \{19\}$ is difference-dominated. $A_3 = A_2 \cup \{-5\}$ is MSTD.

- $A = \{0, 2, 3, 4, 7, 11, 12, 14\}$ can be expressed as $\{0, 2, 3\} \cup \{3, 7, 11\} \cup \{11, 12, 14\} \cup \{4\}$.
- By extending the arithmetic progression {3,7,11}, we are able to generate the desired sequence.
- $A_1 = A \cup \{-1, 15\}$ is MSTD. $A_2 = A_1 \cup \{19\}$ is difference-dominated. $A_3 = A_2 \cup \{-5\}$ is MSTD.
- For $l \ge 2$, $A_{2l} = A_{2l-1} \cup \{4l+15\}$ is difference-dominated, and $A_{2l+1} = A_{2l} \cup \{-4l-1\}$ is MSTD.

Introduction

Table: Non-Filling in Method 3 Example Sequence

Set	$A_i + A_i$	$A_i - A_i$	Cardinality	Diameter	Density
<i>A</i> ₁	32	31	10	16	0.625
<i>A</i> ₂	36	37	11	20	0.550
A ₃	40	39	12	24	0.500
A_4	44	45	13	28	0.464
A ₅	48	47	14	32	0.437
A ₆	52	53	15	36	0.416
A ₇	56	55	16	40	0.400
:	:	:	:	:	•

Limiting MSTD density: 0.250

References

Non-filling Method 3 Extension

Introduction

We extend the general idea behind Non-filling Method 3 to create an even more efficient method.

We extend the general idea behind Non-filling Method 3 to create an even more efficient method.

• For $k \ge 0$, let

$$A_{4k+1} = (5 \cdot [-k-5, k+6] + \{1,2\})$$

$$\cup \{-7, 0, 5, 8, 15\} \setminus \{-9, 1, 2, 6, 7, 17\}$$

$$A_{4k+2} = A_{4k+1} \cup \{5k+36\}$$

$$A_{4k+3} = A_{4k+1} \cup \{-5k-28, 5k+36\}$$

$$A_{4k+4} = A_{4k+1} \cup \{-5k-28, 5k+36, 5k+37\}$$

Growth Rates

Table: Non-Filling in Method 3 Sequence

Set	$A_i + A_i$	$A_i - A_i$	Cardinality	Diameter	Density
<i>A</i> ₁	98	97	23	56	0.410
<i>A</i> ₂	102	103	24	60	0.400
A ₃	106	105	25	64	0.391
A_4	110	111	26	65	0.400
A ₅	114	113	27	66	0.409
A ₆	118	119	28	70	0.400
A ₇	122	121	29	74	0.392
:	:	:	:	:	:

Limiting MSTD density: 0.400

Introduction

Table: Comparison of MSTD set growth characteristics

Method	<i>A</i> ₁	A ₁ Diam.	Growth
Filling 1	≥ 8	≥ 14	Exponential
Filling 2	≥ 10	≥ 17	Linear
Non-Filling 1	≥ 8	≥ 14	Linear
Non-Filling 2	≥ 8	≥ 14	Linear
Non-Filling 3	≥ 11	≥ 18	Linear
Non-Filling 4	≥ 13	≥ 33	Linear

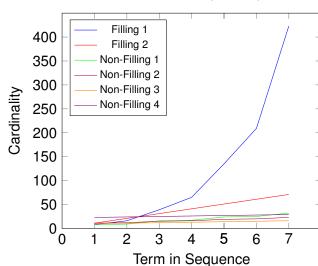
Introduction

References

Growth Rates

Introduction

Size of Sets in Example Sequences



Special Thanks to the NSF Grant DMS2341670

Introduction

Growth Rates

References I

Introduction

P. V. Hegarty.

Some explicit constructions of sets with more sums than differences.

Acta Arith., 130(1):61-77, 2007.

M. B. Nathanson.

Sets with more sums than differences.

Integers, 7:A5, 24 pp., 2007.

G. Martin and K. O'Bryant.

Many sets have more sums than differences.

In Additive combinatorics, CRM Proc. Lecture Notes, vol. 43, pp. 287–305. Amer. Math. Soc., Providence, RI, 2007.

S. J. Miller, B. Orosz, and D. Scheinerman.

Explicit constructions of infinite families of MSTD sets.

J. Number Theory, 130(5):1221-1233, 2010.

M. B. Nathanson.

Problems in additive number theory, V: affinely inequivalent MSTD sets.

North-West. Eur. J. Math., 3:123-141, 2017.

References 2

Introduction

G. Iyer, O. Lazarev, S. J. Miller, and L. Zhang.

Generalized more sums than differences sets.

J. Number Theory, 132(5):1054-1073, 2012.

J. Marica.

On a conjecture of Conway.

Canad. Math. Bull., 12:233-234, 1969.

S. J. Miller, L. Robinson, and S. Pegado.

Explicit constructions of large families of generalized more sums than differences sets.

Integers, 12(5):935-949, 2012.

Y. Zhao.

Constructing MSTD sets using bidirectional ballot sequences.

J. Number Theory. 130(5):1212-1220, 2010.

Y. Zhao.

Sets characterized by missing sums and differences.

J. Number Theory, 131(11):2107-2134, 2011.