VC-dimension of subsets of Hamming graphs

Christopher Housholder Layna Mangiapanello Steven Senger

Missouri State University

2025

Contents

- 1. Background
 - VC-dimension
 - Hamming graph

2. Examples

- 3. Results
 - H(2, q, 1)
 - H(2, q, 1)
 - H(2, q, 1)
 - H(d, q, 1)
 - H(2, q, t)

VC-dimension

VC-dimension

The VC-dimension of the pair (X,\mathcal{F}) is the size of the largest subset $W\subset X$ that can be shattered by $\mathcal{F}.$

VC-dimension

VC-dimension

The *VC-dimension* of the pair (X, \mathcal{F}) is the size of the largest subset $W \subset X$ that can be shattered by \mathcal{F} .

Shattering

Given $W\subseteq X$, we say $\mathcal F$ shatters W if for every subset $S\subseteq W$, there exists an $F_S\in \mathcal F$ such that $W\cap F_S=S$.

Hamming graph

Hamming graph

The Hamming graph H(d,q,t) has vertex set \mathbb{Z}_q^d , and vertices are adjacent when they have Hamming distance exactly t.

Hamming graph

Hamming graph

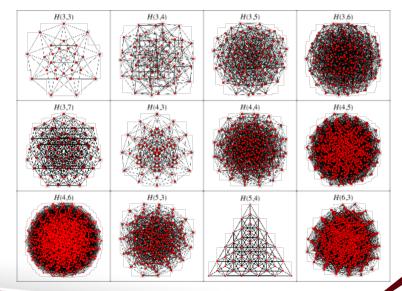
The Hamming graph H(d,q,t) has vertex set \mathbb{Z}_q^d , and vertices are adjacent when they have Hamming distance exactly t.

Hamming distance

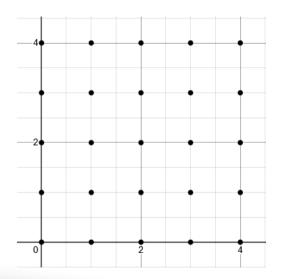
Given two points $x,y\in\mathbb{Z}_q^d$, their Hamming distance, $|x-y|_H$, is the number of coordinates in which they differ. That is

$$|x - y|_H := |\{j : x_j \neq y_j\}|.$$

Hamming graphs



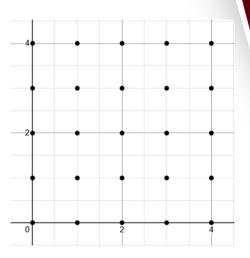
Hamming graphs



Hamming graph

The Hamming graph

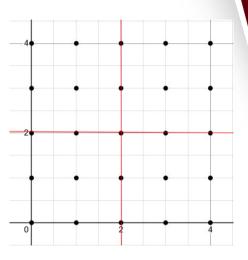
The Hamming graph H(d,q,t) has vertex set \mathbb{Z}_q^d , and vertices are adjacent when they have Hamming distance exactly t.

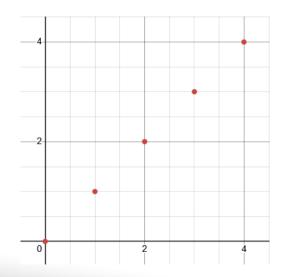


Hamming graph

The Hamming graph

The Hamming graph H(d,q,t) has vertex set \mathbb{Z}_q^d , and vertices are adjacent when they have Hamming distance exactly t.

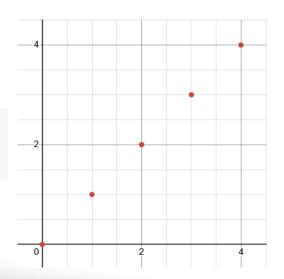


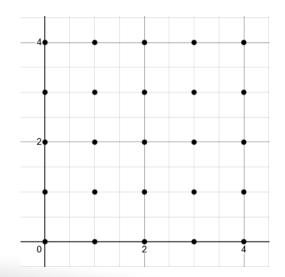


Example 1

VC-dimension 0.

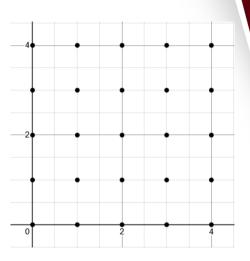
All: None





Necessary information

A Hamming graph with Hamming adjacency defined by a Hamming distance of t=1 can never have VC-dimension 4 or higher.

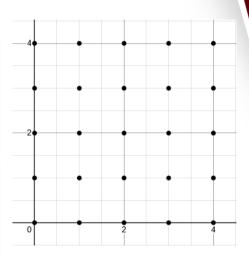


Necessary information

A Hamming graph with Hamming adjacency defined by a Hamming distance of t=1 can never have VC-dimension 4 or higher.

Why?

The idea is relatively easy and fun, and fun things should be left to the audience.



Example 2

VC-dimension 3.

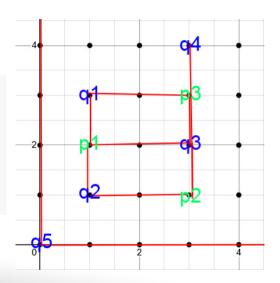
q1: p1, p3

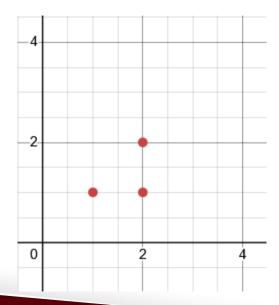
q2: p1, p2

q3: p1, p2, p3

q4: p2, p3

q5: None



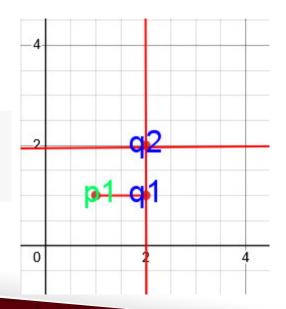


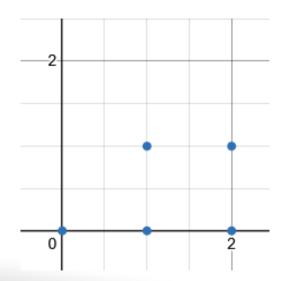
Example 3

VC-dimension 1.

q1: p1

q2: None





Example 4

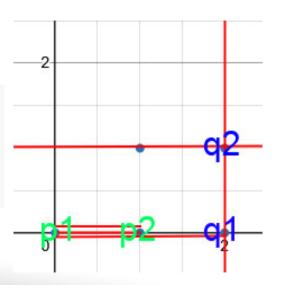
VC-dimension 2.

q1: p1, p2

p1: p2

p2: p1

q2: None



Results

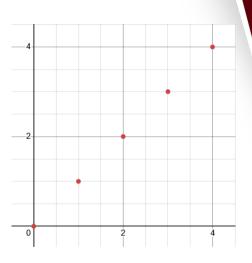
Theorem 0.1

Given natural numbers $d,q\geq 2$, there exists a subset U of the vertices of H(d,q) of size |U|=q so that the VC-dimension of (U,n(U)) is 0.

Theorem 0.1

Theorem 0.1

Given natural numbers $d,q\geq 2$, there exists a subset U of the vertices of H(d,q) of size |U|=q so that the VC-dimension of (U,n(U)) is 0.



Theorem 1.1

Given a natural number $q\geq 2,$ and subset U of the vertices of H(2,q) of size $q+1\leq |U|<2q$, the VC-dimension of (U,n(U)) is at least 1.

Theorem 1.1

Given a natural number $q \geq 2$, and subset U of the vertices of H(2,q) of size $q+1 \leq |U| < 2q$, the VC-dimension of (U,n(U)) is at least 1.

Theorem 1.2

Given a natural number $q\geq 3$, and subset U of the vertices of H(2,q) of size $|U|\geq 2q+1$, the VC-dimension of (U,n(U)) is at least 2.

Theorem 1.1

Given a natural number $q \geq 2$, and subset U of the vertices of H(2,q) of size $q+1 \leq |U| < 2q$, the VC-dimension of (U,n(U)) is at least 1.

Theorem 1.2

Given a natural number $q\geq 3$, and subset U of the vertices of H(2,q) of size $|U|\geq 2q+1$, the VC-dimension of (U,n(U)) is at least 2.

Theorem 1.3

Wait, what about when |U| = 2q???

Theorem 1.3.1

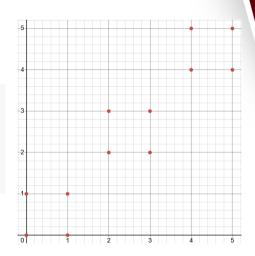
Given an odd number $q \geq 3$, and subset U of the vertices of H(2,q) of size $|U| \geq 2q$, the VC-dimension of (U,n(U)) is at least 2.

Theorem 1.3.2

Given an even number $q \geq 3$, and subset U of the vertices of H(2,q) of size $|U| \geq 2q+1$, the VC-dimension of (U,n(U)) is at least 2.

Theorem 1.3.2

Given an even number $q\geq 3$, and subset U of the vertices of H(2,q) of size $|U|\geq 2q+1$, the VC-dimension of (U,n(U)) is at least 2.

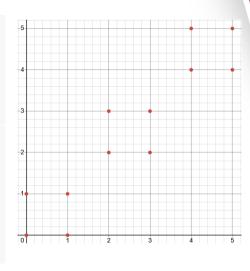


Theorem 1.3.2

Given an even number $q \geq 3$, and subset U of the vertices of H(2,q) of size $|U| \geq 2q+1$, the VC-dimension of (U,n(U)) is at least 2.

Necessary information

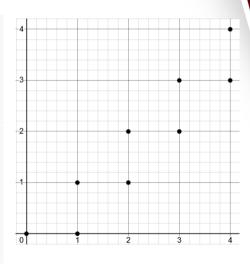
Given a natural number $q\geq 3$, and subset U of the vertices of H(2,q) if U contains three points on the same line L, as well as a fourth point not on L, then the VC-dimension of (U,n(U)) is at least 2.



Given an odd number $q \geq 3$, and subset U of the vertices of H(2,q) of size $|U| \geq 2q$, the VC-dimension of (U,n(U)) is at least 2.

Necessary information

Given a natural number $q \geq 3$, and subset U of the vertices of H(2,q) if U contains three points on the same line L, as well as a fourth point not on L, then the VC-dimension of (U,n(U)) is at least 2.

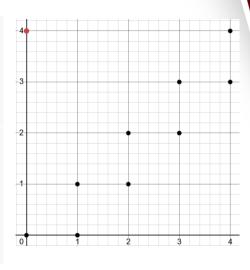


Theorem 1.3.1

Given an odd number $q \geq 3$, and subset U of the vertices of H(2,q) of size $|U| \geq 2q$, the VC-dimension of (U,n(U)) is at least 2.

Necessary information

Given a natural number $q\geq 3$, and subset U of the vertices of H(2,q) if U contains three points on the same line L, as well as a fourth point not on L, then the VC-dimension of (U,n(U)) is at least 2.

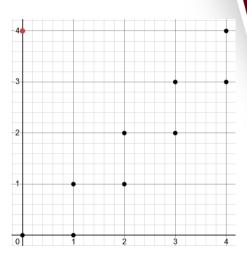


Theorem 1.3.1

Given an odd number $q\geq 3$, and subset U of the vertices of H(2,q) of size $|U|\geq 2q$, the VC-dimension of (U,n(U)) is at least 2.

Necessary information

Given a natural number $q\geq 3$, and subset $|U|\geq 2q$ of the vertices of H(2,q) if U contains a "corner" then the VC-dimension of (U,n(U)) is at least 2.

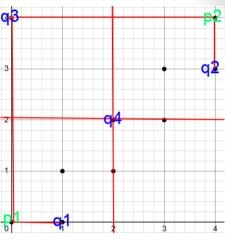


Theorem 1.3.1

Given an odd number q > 3, and subset U of the vertices of H(2,q) of size $|U| \geq 2q$, the VC-dimension of (U, n(U)) is at least 2.

Necessary information

Given a natural number q > 3, and subset $|U| \geq 2q$ of the vertices of H(2,q) if U contains a "corner" then the VC-dimension of (U, n(U)) is at least 2.



Theorem 1.4

For $q\geq 4$, any subset U of the vertices of H(2,q) with $|U|\geq 3q+1$, the VC-dimension of (U,n(U)) is three.

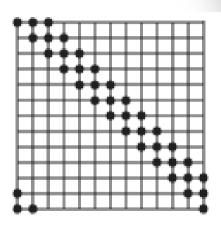
Theorem 1.4 - Proof idea

Theorem 1.4

For $q\geq 4$, any subset U of the vertices of H(2,q) with $|U|\geq 3q+1,$ the VC-dimension of (U,n(U)) is three.

Necessary information

This is hard...



H(d, q, 1)

Theorem 2.1

Given a natural number $q \geq 3$, and subset U of the vertices of H(d,q) of size $|U| \geq 2q^{d-1} + 1$, the VC-dimension of (U,n(U)) is at least 2.

Theorem 2.2

Given natural numbers $d,q\geq 4$, and a subset of U of the vertices of H(d,q) of size $|U|\geq 3q^{d-1}+1$, then the VC-dimension of (U,n(U)) is 3.

Theorem 2.1/2.2

Theorem 2.1

Given a natural number $q\geq 3$, and subset U of the vertices of H(d,q) of size $|U|\geq 2q^{d-1}+1$, the VC-dimension of (U,n(U)) is at least 2.

Theorem 2.1/2.2

Theorem 2.1

Given a natural number $q \geq 3$, and subset U of the vertices of H(d,q) of size $|U| \geq 2q^{d-1} + 1$, the VC-dimension of (U,n(U)) is at least 2.

Necessary information

We have constructed explicit examples in H(3,q) with size $\frac{5q^2}{4}$ that maintain VC-dimension 1 by avoiding all shattering pairs.

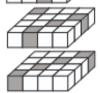
Theorem 2.1/2.2

Theorem 2.1

Given a natural number $q \geq 3$, and subset U of the vertices of H(d,q) of size $|U| \geq 2q^{d-1} + 1$, the VC-dimension of (U,n(U)) is at least 2.

Necessary information

We have constructed explicit examples in H(3,q) with size $\frac{5q^2}{4}$ that maintain VC-dimension 1 by avoiding all shattering pairs.



H(2, q, t)

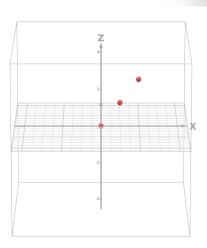
Cool Configuration

Previously it was/we believed that VC-dimension of 4 or greater was impossible to achieve on H(2,q,t) and while this is true for H(2,q,1), we found that it is surprisingly easy to construct graphs with VC-dimension n by increasing the Hamming distance with n.

H(d,q,t)

Cool Configuration

Previously it was/we believed that VC-dimension of 4 or greater was impossible to achieve on H(2,q,t) and while this is true for H(2,q,1), we found that it is surprisingly easy to construct graphs with VC-dimension n by increasing the Hamming distance with n. (i.e. t=d=n)



Thoughts, comments, concerns, critiques?

Thanks:)

Christopher Housholder Layna Mangiapanello Steven Senger

Missouri State University

2025

Missouri State.